
1 Introduction 

All data are not only spatial, they are increasingly temporal 
(Kitchin 2013), ‘big’ and diverse, with many new forms of data 
generated in our increasingly digital, connected and GPS-
enabled lives (Kitchin and McArdle 2016). Such developments 
are changing the nature of spatial data analysis (Brunsdon 
2016). Space-time relationships are central to GIS research 
(Yuan 2017) and while process spatial auto-correlation is well-
known (Tobler 1970, 2004), the concept of serial auto-
correlation is more uncertain for temporal processes. Many 
processes have periodicities which require consideration of the 
phase of observation.  

There are a number of approaches for analysing space time 
data and interactions. Evolutionary approaches include cellular 
automata (e.g. Balzter et al. 1998; Dietzel et al. 2005) and 
agent-based models (e.g. O'Sullivan and Haklay 2000; Torrens 
et al. 2011). In these approaches solutions emerge through 
simulation but can be sensitive to initial parameterisation and 
difficult to tune. Other methods explicitly model local and 
heterogenous spatial and temporal interactions (Kyriakidis and 
Journel 1999; Fotheringham et al. 2015) including ARIMA 
(autoregressive integrated moving average), STARIMA 
(space-time autoregressive), panel models and geostatistical 
approaches (Griffith 2010; Deng et al. 2017). Others 
approaches such as geographically and temporally weighted 
regression (Huang et al. 2010; Fotheringham et al. 2015; Liu et 
al. 2018) explicitly focus on non-stationary spatiotemporal 
attribute relationships. However, there is an implicit 
assumption of serial as well as spatial autocorrelation in these 
approaches. For these reasons, some have identified the need 

for methods to handle spatiotemporal data (Goodchild 2013; 
Miller and Goodchild 2015).  

In brief a neural network (NN) model consists of a set of 
adaptive and unidirectionally connected processing elements, 
typically structured in layers, with input layers, hidden layers 
and an output layer (see Figure 1). Recurrent neural networks 
(RNNs) include a looping mechanism to allow information 
about the hidden state, representing previous inputs, to be 
passed from one step to the next. Reviews of NNs and RNNs 
can be found in Tsoi and Back (1997) and Lipton et al (2015). 
There is a long history of NNs in spatial analysis, starting with 
Fischer (1996) and recent applications to geographical 
problems include Li et al (2017), Yu et al (2017) and Lyu et al 
(2016). On overview can be found in Fischer and Abrahart 
(2014).  

 
Figure 1: Example of a feed forward neural network (from 

http://cs231n.github.io/neural-networks-1). 

 
Fischer (1996) comments that NNs are used in machine 

learning because of their computational adaptivity, their speed 
of computation through their parallel distributed architectures 
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Abstract 

This paper explores the application of Long Short-Term Memory (LSTM) recurrent neural networks to a geographical problem. Specifically, 
it explores the benefits of including spatial (geographic) information in the input parameters to this family of machine learning approaches. The 
exploratory initial analyses parameterised the LSTM with spatially lagged data derived from a contiguity analysis and temporally lagged under 
assumptions of both serial and spatial autocorrelation using historical data for 1 to 20 years. These indicated model inferential and predictive 
gains with the inclusion of spatially and temporally lagged data overall when seeking to predict the spatial distribution of NDVI (as a measure 
of greenness and livestock pressure). They also indicated that the most salient years to be lags of 1, 2, 17, 18, 19 and 20 years. A number of areas 
of future work are identified, not least of which is the challenge to circumvent inherent assumptions of serial autocorrelation in many space-time 
methods and to consider the phase of data relative to the periodicity of the process being considered.  
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support real-time applications, their inherent nonlineariy which 
supports complex tasks such as pattern and speech recognition 
and their ability to cope with noisy, messy data. An excellent 
and informative application of RNNs and LSTMs with respect 
to land cover can be found in Minh et al (2018). 

This paper examines the application to spatiotemporal 
geographical problems of Long Short-Term Memory (LSTM) 
recurrent neural networks (RNNs). These were specifically 
developed to model temporal sequences and their long-range 
dependencies more reliably than NNs and RNNs. Specifically, 
RNNs may in some circumstances be unable to apply relevant 
information to the current state of the solution if that 
information was identified much earlier in the “learning” 
process: they can become incapable of handling such “long-
term dependencies” (i.e. unable to connect the distant 
information). LSTMs (Hochreiter and Schmidhuber, 1997) 
were developed to avoid the long-term dependency problem 
and to be able to apply information learnt much early in their 
process. An accessible and informative overview of LSTMs is 
provided in Olah (2015).  

One of the problems with propagation approaches like NNs 
is that information (signals) can be multiplied by weights a 
large number of times, depending on the number of timesteps 
(iterations or epochs). If the weights are small, the problem of 
vanishing signals, making the tasks of deep learning difficult. 
Equally if the weights are large the machine learning process 
can explode. LSTMs deal with this by having a different 
structure to their cells. Each is composed of four elements: an 
input gate, a neuron with a connection to itself (a self-recurrent 
connection), a forget gate and an output gate. The gates serve 
to dampen or modulate the memory cell interactions. The input 
gate can allow signal in to alter the memory state or block it 
and similarly the output gate can block or not. The forget gate 
modulates the cell’s self-recurrent connection, allowing the cell 
to remember or forget its previous state, as needed. 

 
Figure 2: Example of an LSTM cell 

(http://deeplearning.net/tutorial/lstm.html). 

 
The aim of this paper is to explore the application of LSTMs 

to explicitly spatiotemporal geographical problems. The 
analysis evaluates the degree to which model outputs 
(predictions) improve when they are parameterised with 
spatially lagged variables as well as the usual temporally 
lagged ones, and the discussion considers a number of future 
areas of research in the general area of identifying patterns (and 
therefore processes) within spatiotemporal data by using a 
variety of different methods. The R code and data used in this 
analysis are available at https://github.com/xyz.  
 
2 Methods 

2.1 Case Study: historical Mongolian livestock 
Nomadic pastoralism in Mongolia has been a sustainable model 
for thousands of years. In the communist period livestock 
production was centrally planned and managed, with nomadic 
herders raising state-owned livestock and encouraged to 
organize collectives locally. Collectives self-regulated their 
seasonal travel and where their livestock grazed, resulting in 
good pasture maintenance. However, since the early 1990s, 
Mongolia has been transformed into free-market economy 
which has resulted in a rapid increase of livestock and herder 
populations (Fernandez-Gimenez 2006) and pastures no longer 
being collectively managed. This has led to serious 
sustainability and land management concerns (Togtokh 2008) 
but as yet little research has been undertaken to quantify the 
overgrazing problem, and the threat to fragile grassland 
environments (Liu et al, 2013).  

Data of annual livestock populations (sheep, goat, horse, 
cattle and camel) for 334 soums in Mongolia for the period 
1991 to 2017 were downloaded from the Mongolian Statistical 
Information Service (http://www.1212.mn). Soums are second 
level administration units. The soums and the spatial adjacency 
are shown in Figure 3. Annual data of mean NDVI (vegetation 
greenness) and total precipitation were also collated for each 
soum (see Figure 4). The aim was to develop a predictive model 
of NDVI.  

 
Figure 3: The soums in Mongolia and their contiguity. 

 
 

Figure 4: The distributions of the annual data over the soums 
(top = NDVI, middle = Precipitation, bottom = Livestock). 
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The 27 years of data for each soum were pre-processed in the 

following way. The individual livestock types were combined 
to create a livestock total for each sou. Then the data arranged 
in long format for the 3 variables (i.e. with a record for each 
soum and for each year for each of the 3 variables). They were 
ordered by soum and by year and then grouped by soum and 
the precipitation and livestock data were lagged for 1 to 20 
years. Finally, spatially lagged measures of livestock were 
calculated for each soum. These were derived from the 
neighbouring soums, using a bi-square distance decay model 
with a 180km limit. This was used to determine a distance 
weighted mean of neighbouring livestock counts for each 
soum. All the variables were individually normalised to the 
range [0,1]. The input data for the analysis thus included NDVI 
for 2011 to 2017 as the target variable, and lagged data years -
1 to -20 for precipitation and livestock number, and spatially 
lagged livestock data for -1 to -20 years as the predictor 
variables. 

 
2.2 Analysis 
A LSTM model was constructed after lengthy investigations of 
different numbers of hidden layers, different number of cells in 
each layer and different types of layer. The “best” LSTM 
structure will depend on a number of factors including the size 
of the data (number of records) and the data variability. There 
are no formal guidelines on how to determine the number of 
layers or the number of memory cells in a LSTM and so this 
process was guided by the following heuristics / rules of thumb:  
1.Start with a single hidden layer with a small 
number of cells 
2.Increase the number of cells 
3.If this does not work try adding another layer 
and repeat  

The aim here is to identify a model that avoids under- and 
over-fitting. Investigations determined that a model with 2 
hidden layers performed well across different analysis: a single 
LSTM layer with 32 cells and a tanh activation, and a dense 
matrix vector multiplication layer with 4 cells. The latter 
applies a rotation, scaling, translation transform and whose 
values are the trainable parameters which get updated during 
back propagation. The investigations were undertaken using 
different lengths of lagged data (from 1 to 20 years) and 
different training validation splits, using a mean absolute error 
metric under an Adam optimiser. 

 
3 Results 

The final model specification was determined by running 
multiple LSTM models with different lengths of spatially and 
temporally lagged data with a training and validation split of 
2014. This allowed long and short lags of data to be evaluated 
and used to predict NDVI in each soum for 2015, 2016 and 
2017. The R2 fits for these runs are shown in Figure 4. These 
show an improvement with the inclusion of spatially lagged 
data and suggest that models for NDVI prediction in Mongolia 
should include lagged data from years -1, -2, and -17 to 20 

Lagged data from years -1, -2, -17, -18, -19 and -20 were used 
to parameterise the LSTM model inputs to predict NDVI at 
soum level. The fits after different epochs are shown in Figure 
5 and indicate a close-fitting model that is neither being under- 

or over-fitted. The results of predicted minus observed NDVI 
for each predicted year are shown in Figure 6. These show the 
spatial distribution of the differences. In 2015 and 2017 there 
is some spatial structure but there is considerably more in 2016 
with a distinct region of underestimation running east west in 
the northern part of the study area. Future work will seek to 
understand the drivers of these variations. 

 
Figure 4: The R2 fit values for lagged data (top = temporal 
lagged data, bottom = spatial and temporal lagged data). 

 

 
 
Figure 5:  The LSTM model fits (Mean Absolute Error). 

 
 

Figure 6: The distributions of predicted minus observed NDVI 
for 2015, 2016 and 2017. 
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4 Discussion points 

This paper reports initial work that is seeking to understand 
some of the landscape scale processes in Mongolia and to 
develop machine learning methods that are sensitive to 
geographical and spatial processes.  

Here spatial information was incorporated into the LSTM 
model by attribute spatial lagging using contiguity and distance 
decay measures. The incorporation of spatial information in the 
form of spatially lags improved the predictive model fits greatly 
in comparison with model prediction based simply on 
temporally lagged data. This suggests that the inclusion of 
explicitly spatial attributes in machine learning approaches 
could help to solve geographical problems and that further 
development of neural approaches able to reason with spatial 
interactions between observations could be of benefit. Future 
work will develop these ideas further in order to make machine 
learning approaches more geographically aware. Specifically, 
we will seek to include methods for accounting for spatial 
structure (and not just spatially lagged variables as here) within 
LSTM models.  

A number of other areas will be also addressed in future 
work, using variables excluded from this analysis describing 
socio-economic activity (income, local government income, 
employment rates), demographics (population changes) and 
livestock related activity (deaths by diseases, by climate events, 
households engaged directly in livestock management). These 
will allow a number of other questions to be investigated, 
particularly if data such population changes can be used to infer 
flows and thus be used to evaluate urbanisation pressures in 
Mongolia using gravity and spatial interaction models.  
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