
1 Introduction 

According to the United Nations Department of Economic 
and Social Affairs projections (United Nations, 2010), the 
percentage of world population living in urban areas, estimated 
at 54% in 2014, is likely to rise to 66% by 2050. As a result, 
cities will steadily become larger and larger and relevant 
environmental transformations will be required to meet the 
increasing demand for food, energy, water, and land. 

Among the many critical problems resulting from 
urbanization, Urban Heat Island (UHI) is a well-known issue 
which refers to the higher temperatures observed in the cities 
compared to the surrounding rural areas (Oke, 1982, 1976). 
Many studies have been published over the years that register 
this urban microclimatic phenomenon in numerous cities 
around the world regardless of the urban spatial scale (Cardoso 
et al., 2017; Choi et al., 2014; Pinho and Orgaz, 2000). The 
primary causes of UHI formation are attributed to urbanization-
related triggering factors, which alter the natural surface energy 
and radiation balances and increase the heat trapping at the 
surface. For example, the replacement of natural soil and 
vegetation with sealed building materials (stone, concrete, 
asphalt, etc.), the 3D urban geometry (built-up ratio, sky view 
factor, etc.), and the heat generated from anthropogenic 

activities (combustion, lighting, heating, traffic, etc. 
(Shahmohamadi et al., 2011)). 

If not effectively managed, the UHI phenomenon can have 
serious implications on the environment and consequently on 
community’s quality of life. Negative impacts suggested by 
United States Environmental Protection Agency (Hashem, 
2008) refers to people’s health issues, increase in energy 
consumption for cooling systems, amplification of air pollution 
and greenhouse gas emissions problems, and degradation of 
water quality due to thermal pollution. In light of this, a deeper 
knowledge about the different climate zones characterizing 
urban areas is needed to allow urban climate modelling and 
appropriate mitigation measures adoption. 

Over time, several climate-based classification systems have 
been proposed to study the effect of urbanization and city 
structure on urban climate (Auer, 1978; Chandler, 1965; 
Ellefsen, 1991; Oke, 2004). However, the most recent and 
comprehensive climate-based classification system was 
developed by Stewart and Oke (Stewart and Oke, 2012) called 
Local Climate Zone (LCZ) classification system. LCZ consists 
of 17 standard classes which divide both urban and rural areas 
to “built types” and “Land-cover types” mainly based on the 
characteristics of surface structure (buildings and trees height 
and density), and surface cover (impervious and pervious) 
(Stewart and Oke, 2012). The surface properties such as 
vegetation fraction, building/tree height, and anthropogenic 
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heat flux, which directly affect the screen height temperature, 
make the zones distinguishable from each other (Stewart and 
Oke, 2006). Detailed guidance on how to perform a LCZ 
classification map is given in a global project called WUDAPT 
(World Urban Database and Access Portal Tool) (Bechtel et al., 
2015).  

Several studies have investigated the effects of land surface 
characteristics on land surface temperature (LST).  A research 
project exploring the relationship between LST and land 
surface properties (vegetation and built up) in Nairobi (Mwangi 
et al., 2018), illustrated that LST is negatively correlated with 
Normalized Density Vegetation Index (NDVI), and positively 
correlated with Built-Up Density Index (BDI).  Another study 
in Budapest (Szegediensis, 2016), investigated the effects of 
greenery on LST, and results showed a significant difference of 
LST (40 °C on 02 August, 2014) between compact built areas 
and areas with dense trees. 

Therefore, this paper aims at investigating the relationship 
between LCZ classification and LST in the canton of Geneva 
in Switzerland. To explore the latter association, some 
exploratory spatial data analysis and remote sensing 
approaches have been applied and will be discussed in the 
following sections. 

 
2 Previous work 

TherSol was a project done in Geneva, Switzerland, from 2014 
to 2016 aiming at exploring the influence of ground surfaces on 
urban climate (Ingensand et al., 2016). More specifically, the 
main goals of this project were to identify significant types of 
urban soil and to highlight the impact of these identified soil 
types on urban microclimate. In order to accomplish these 
goals, the area around Plainpalais in the city of Geneva was 
selected, which is a flat open area with three very different soil 
types such as red brick aggregates, asphalt, and lawn (Figure 
1). Based on the various soil types, 15 zones were determined 
in this area, and meteorological observations including 
temperature at different heights above the ground (from 20 to 
250 centimeters), air humidity, solar irradiation, wind speed, 
and wind direction were collected within the zones. The data 
were acquired using a backpack equipped with thermometers 
during four days in June, July, and August in 2015. The 
variation of the measures within the 15 zones were analyzed, 
and the results highlighted that the permeable surfaces in 
urbanized areas significantly decrease the risk of UHI 
phenomenon. To expand this experiment for the entire canton 
of Geneva, all the surface types and measures are required, 
while obtaining such observations for a large region, requires a 
considerable amount of time and money. Therefore, this study 
presents a LCZ classification approach to address the effects of 
surface covers on urban climate and as a result UHI 
phenomenon.  
  

Figure 1: The area of Plainpalais in Geneva, lawn (green dot), 
red brick aggregates (red dot), and asphalt (blue dot) 

 
        

 
3 Methods 

The methodology consists of three parts, first the creation of a 
LCZ classification map, second the computation of the LST, 
and finally the exploration and association between the two 
using spatial and statistical analysis. 
  
3.1 LCZ classification 
The methodology of producing a LCZ classification map is 
based on our previous work (Lotfian, 2016). A pixel-based 
supervised classification approach with Random Forest 
algorithm has been used. Figure 2 illustrates the flowchart of 
the specific iterative methodology, which needs to be followed 
to obtain the LCZ classification map. The first operations in 
this process are the manipulation of the raw data. They include 
the digitization of the training data for the supervised 
classification and the pre-processing of the satellite images. In 
this case study, the training areas are obtained according to the 
characteristics of LCZ classification system, and 8 of the 17 
possible classes were found and considered as the main ones 
for our region of interest (Table 1). The second step regards the 
pre-processing operations of the satellite images. In fact, 
Landsat8 images are clipped according to the region of interest, 
and all the bands are resampled into 100m spatial resolution 
grid and merged together to create a layer stack. These 
operations have been mainly performed in QGIS 
(www.qgis.org). Finally, the random forest algorithm is 
applied. In this study, Random Forest has been implemented 
using both the open source programming software R and in the 
open source program SAGA GIS, and the results were 
compared between the two approaches. As results, R fits better 
the comparison and thus it is used in this methodology. In fact, 
R runs the classification faster compared to SAGA, with less 
steps of operation (such as Geo-referencing and merging the 
training areas) and the “out-of-bag (OOB)” error and confusion 
matrix are obtained at the end of the procedure. As the output 
of the random forest classification from R tends to be noisy, a 
post-classification filter is needed. In this work, a majority filter 
with the neighborhood of 1px is applied using QGIS, as it 
change the pixel values based on the value of their contiguous 
pixels. It is possible to test the majority filtering using different 
neighborhoods, depending on the desired output. 

 

http://www.qgis.org/
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Figure 2: Flowchart describing the methodological approach 
used to generate the LCZ classification map 

 
 

Table 1: Local Climate Zone (LCZ) classes retained for 
canton of Geneva (Stewart and Oke, 2012). Class ID 
corresponds to the assigned IDs for our classification not the 
LCZ standard class numbers 

 
 
 

3.2 LST map 
The LST is obtained using a procedure defined by Avdan  and 
Jovanovska (Avdan and Jovanovska, 2016). The authors have 
used band10 (thermal), band5 (NIR), and band4 (red) of 
Landsat8 images to obtain the LST in degrees of Celsius. We 
have followed their methodology by developing an R script, 
which obtains the three mentioned bands as the input data and 
that produces the LST map in the Geo-Tiff format. Figure 3 

illustrates the steps to be followed to retrieve the LST from any 
Landsat8 image.  

 
3.3 Statistical analysis 
To explore the overall variation of LST within the LCZ classes, 
box plots and 95% confidence intervals of LST values in each 
class were generated in R. 
Moreover, to investigate the spatial autocorrelation between the 
two variables, global spatial autocorrelation Moran’s I, and 
Local Indicators of Spatial Association (LISA) (Anselin, 1995) 
implemented in GeoDa software (Anselin and Mccann, 2009) 
were used.  
Moran’s I statistics evaluates the existence of global spatial 
clusters in the dataset, and it uses one measure to summarize 
the whole study area, which can be computed as illustrated in 
Equation 1.  

 
Equation 1: Moran's I statistic 

 
 

Where 
• 𝑁𝑁 is the number of observation units 
• 𝑊𝑊𝑊𝑊𝑊𝑊 is the spatial weight 
• 𝑋𝑋𝑊𝑊 is the value at location i 
• 𝑋𝑋𝑊𝑊 is the value at location j 
• 𝑋𝑋 is the mean of the variable 
 
LISA statistics on the other hand locally identifies the regions 
where variables are strongly positively or negatively correlated. 
As a result of LISA analysis, a Moran’s I scatter plot, a cluster 
map, and a significance map were obtained. Moran’s I 
coefficient ranges from -1 to 1 indicating a global spatial 
autocorrelation, positive values illustrate spatial similarity, 
negative values show dispersion  or spatial dissimilarity, and 
zero means no spatial autocorrelation. The cluster map 
generates four clusters: High-high, low-high, low-low, and 
high-low, where high-high indicates variables with high values 
surrounded by high values, low-high indicates variables with 
low values surrounded by low values, and likewise for low-low 
and high-low. Finally, the significance map shows at which 
statistical levels there are significant correlations.  
  To compute LISA, a weighting scheme of four nearest 
neighbors were applied, and for the statistical significance 
testing a sample of 999 permutations were used. 
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Figure 3: Calculation of Land Surface Temperature from 
band10, band5, and band4 of Landsat8 images 

 
 
 

 
4 Results 

4.1 LCZ classification 
Figure 4 illustrates the LCZ classification map obtained from 

Landsat8 image of 26 June 2018. The OOB error obtained from 
random forest was 0.07, which means the overall accuracy of 
the classification is 93%. Due to spatial autocorrelation 
between the training and testing datasets, the overall accuracy 
of spatial data in random forest algorithm tends to be 
overestimated. It is usually suggested to use a separate testing 
dataset to obtain the overall accuracy; however, for the 
objective of this study the accuracy assessment obtained from 
random forest was sufficient; therefore, a separate testing 
dataset was not used.  

 
4.2 Land Surface Temperature 
  Figure 5 shows the LST map generated from the same 
Landsat8 image as LCZ classification. The map illustrates the 

spatial distribution of surface temperature in the canton of 
Geneva. It is shown that the hottest areas are mainly located in 
the center and north-west of the canton, which are the highly 
built urban zones with impervious surfaces materials, and as we 
go further from the center, the LST decreases. On the other 
hand, the water bodies and areas with dense trees are associated 
with lowest surface temperature.  

 
4.3 LCZ and LST 
  The box plots generated for LST values versus different LCZ 
classes are shown in Figure 6. The results illustrate clear 
variation of LST with respect to LCZs. LCZ1 (compact mid-
rise) and LCZ4 (large low-rise), followed by LCZ2 (open mid-
rise), were the first and second hottest zones respectively. 
While as illustrated in the LST map, LCZ8 (water) and LCZ7 
(dense trees) had the lowest surface temperature. The two non-
urban classes, sparsely built, and low plants did not show a 
considerable difference (slightly higher) compared to the urban 
class open low-rise. In addition to the box plots, the 95% 
confidence intervals of mean LST is presented in Figure 7, 
which illustrates a more perceptible variation of LST within the 
LCZs; a difference of 18°C between LCZ1 and LCZ7 were 
observed.  

In addition, the results from LISA cluster map (Figure 8) 
illustrated that 20229 pixels showed no spatial autocorrelation 
between LST and LCZ, whereas 3736 pixels were clustered as 
low-high (low temperature surrounded by high LCZ values 
according to the numbers presented in Table 1), and 3504 pixels 
as high-low. There were only few pixels clustered as high-high 
and low-low with 2 and 247 pixels respectively. Furthermore, 
the significance map (Figure 9) showed 4331 cells significantly 
auto-correlated at p-value 0.001 and 3158 cells at p-value 0.01. 
The overall Moran’s I coefficient was -0.62, which indicates a 
strong negative spatial association between LST and LCZs.  
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Figure 4: Local Climate Zone Classification map with spatial resolution of 100m. Low-rise and mid-rise represents the buildings' 
heights, 3-10 meters and 10-25 meters respectively 

 
 

Figure 5: Land surface temperature map of Geneva canton, temperature is in degrees of Celsius 
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Figure 6: Box plots of LST for each LCZ class. The numbers in x-axis corresponds to the LCZ classes 

 
 
 

Figure 7: 95% confidence intervals of mean land surface temperature within each local climate zone class 
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Figure 8: LISA cluster map. The map represents where there are spatial positive or negative autocorrelation between LST and 

LCZs classes, and clusters the values accordingly. First variable is LST and second LCZ. Background map: Landsat8 image 

 
 
 

Figure 9: LISA significance map. The map illustrates where LISA clusters are statistically significant and at which significance 
level. Background map: Landsat8 image 
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5 Discussion 

   The spatial distribution of UHI can be determined thorough 
the LCZ classification, as this scheme is based on surface 
thermal characteristics. Analyzing the box plots, it is clearly 
observable that the behavior of urban and non-urban classes 
with respect to temperature are opposite to each other. For 
dense trees and water the high temperature values are outliers, 
on the contrary for the urbanized zones the outliers are 
associated with low temperature values. The 95% confidence 
intervals for mean LST within each LCZ classes illustrated that 
there are statistically significant differences. The LISA cluster 
map highlighted a clear association between LST and LCZ 
variables; the compact mid-rise and open mid-rise areas fall 
mainly within High-Low clusters whereas dense trees and 
water bodies in Low-High clusters. The contribution of extreme 
classes such as compact mid-rise, dense trees, and water on 
LST values were significantly observable compared to the 
other ones. Surprisingly, low plants and sparsely built classes, 
which are located in the surrounding rural areas showed higher 
values of LST compared to the open low-rise, which is an urban 
type class. This can be due to the fact that LCZ open low-rise 
is mainly located near the lake-side and it consists of low 
buildings (such as villas) with trees around them, and it appears 
(from dense trees class) that the effect of trees on reducing the 
temperature is stronger compared to low plants. The results 
highlights the hot spots and their associated surface cover types 
(specially in urban areas), which can be a very useful input for   
urban planners and urban architects for decision makings with 
respect to heat mitigation strategies such as choices in surface 
materials, planting trees, increasing surface albedo, etc.  

 
 

6 Conclusions and prespectives 

   Due  to an increase in urbanization and as a result changes in 
land cover,  which create the so-called urban heat  island (UHI) 
phenomenon, this study focuses on the effect  of surface 
characteristics on land surface temperature in the canton of 
Geneva. Hence, from Landsat8 images, LCZ classification map 
and LST map were obtained, and subsequently LISA statistics 
were used to explore the local spatial auto-correlation between 
the two obtained variables. Results illustrated that urbanized 
areas with high dense buildings have higher values of land 
surface temperature compared to the areas with high levels of 
vegetation especially dense trees. Nonetheless, to enhance the 
results and to avoid biased outcome it is better to check the 
analysis over different times of the year mostly because of the 
varieties in degrees of vegetation over different seasons. This 
approach is going to be applied in different cities and to 
compare the results afterwards to explore the various factors 
causing UHI as well as understanding how this can help urban 
planners and urban policy makers to take actions towards 
sustainable urban development. 
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