
1 Introduction 

Small-scale temperature fluctuations are important for 

meteorology because the small-scale, turbulent motions that 

cause these fluctuations are likely to be universal (compared to 

larger-scale motions), which could lead to a better 

understanding of turbulence at all scales (Sreenivasan and 

Antonia 1997). Many decades ago, Kolmogorov (1941) 

proposed that within a certain range of the atmosphere, termed 

the ‘inertial subrange’, energy containing eddies are 

homogenous (spatially stationary), isotropic, and independent 

of the larger, energy containing eddies in which they are nested. 

These properties adhere to several laws in Geographic 

Information Science (according to Goodchild 2004) including 

Tobler’s First Law and the so-called Second Law, or principle, 

of heterogeneity (or statistical nonstationarity), which posits 

that there is no ‘average’ place on earth and that geographic 

variables exhibit uncontrolled variance. Given these 

similarities between atmospheric phenomena and geographic 

phenomena, it is not surprising that the statistic commonly 

employed by atmospheric scientists to characterize eddies in 

the inertial range, known as the temperature structure function 

(Eq. 1), closely resembles the variogram, which is a 

cornerstone of geostatistics. The temperature structure function 

is: 

ΔTℎ
2 = [𝑇(𝑥 + ℎ) − 𝑇(𝑥)]2 (1) 

 

where T is the temperature measured at location x, and h is the 

separation distance between two measurements. In comparison, 

the variogram is calculated as (Oliver and Webster 2015): 

 

2𝛾ℎ =  𝐸[{𝑍(𝑥) − 𝑍(𝑥 + ℎ)}2]. (2) 

Thus, the variogram used in geostatistics is analogous to the 

temperature structure function used in atmospheric science. 

However, beyond the structural similarities of the equation, 

variogram analysis has not been applied extensively in 

meteorology and atmospheric physics (but see Sheuerer and 

Hamill 2015). Thus, there is room to advance understanding of 

atmospheric phenomena, particularly turbulence, through 

geostatistical analyses.  

In particular, in the inertial subrange, the temperature 

structure parameter has been found to obey the relation: 

𝛥𝑇ℎ
2 =  𝐶𝑇

2ℎ
2
3 (3) 

where CT
2 is the temperature structure parameter and acts as a 

proportionality factor (Wyngaard et al. 1971). Eq. 3 is 

analogous to a power law function: 

𝑦 =  𝑎𝑥𝑘 (4) 
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Abstract 

 Variogram analysis is commonly used in the geospatial sciences to quantify spatial autocorrelation in both human and physical phenomena. 

However, the use of geostatistics and variograms has rarely been extended for vertical atmospheric measurements, where geographic 

principles such as spatial autocorrelation may play a key role in understanding turbulence. Turbulence remains one of the most unpredictable 

and least-understood geographic phenomena. Small-scale temperature fluctuations are important for understanding turbulent motions, but 

until recently, sampling these fluctuations throughout the vertical extent of the boundary layer was difficult. Geospatial technologies such as 

unmanned aircraft systems (UAS) are allowing researchers to capture data at the spatial and temporal resolutions necessary to test long-

standing theories, and they are also facilitating the use of spatial analytical research. Quantifying the structure of turbulent features has been 

challenging, but variograms may offer a solution. Building on existing research, this study extends variogram analysis into the lower 

atmospheric boundary layer (ABL) to determine whether the scaling exponents in power model variograms fit to data captured from a UAS 

contain information relevant for understanding turbulence.  Results indicate that model errors are more correlated during times when 

turbulence is supressed, leading to scaling exponents above 1. As turbulence increases from both radiative and mechanical sources, scaling 

exponents trended toward 1 and 0, indicating more random correlation, or even negative correlation of the model errors. While additional 

work is needed across a variety of environments and conditions, these findings have the potential to aid meteorologists and weather forecasters 

in better understanding turbulence. 
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where 𝑎 is a constant, and 𝑘 is the scaling exponent. When the 

variable 𝑥 in Eq. 4 is scaled by a constant factor (in the case of 

the temperature structure function, 𝐶𝑇
2), the function itself is 

scaled proportionately. In other words, power law functions are 

scale invariant, which means they are an attractive model for 

studying geospatial phenomena where scale and scaling 

confound analyses (i.e., the modifiable areal unit problem, or 

MAUP). Since atmospheric processes are often intrinsic but not 

second-order stationary, power law functions are well-suited 

for modelling. 

In theory, Eq. 3 can be solved to determine the separation 

distances at which the temperature structure parameter is valid 

for scaling measurements, but until recently, acquiring the fine-

scale data needed to test these scaling relationships has been 

difficult. Historically, atmospheric sampling has relied almost 

entirely on (1) meteorological towers, which are fixed in space 

and have limited vertical reach (~10m), and (2) weather 

balloons, which are launched infrequently both in space and 

time. Weather balloons can sample to a higher altitude 

compared to towers, but their path is uncontrolled, and the 

spatial and temporal resolution of the data is often not fine 

enough to capture the small-scale measurements of interest. To 

fill these gaps, geospatial technologies such as unmanned 

aircraft systems (UAS, or drones) are being been adopted by 

atmospheric scientists at unprecedented rates because they can 

sample portions of the atmosphere that are beyond the reach of 

meteorological towers, their position in space can be 

controlled, and samples can be collected at systematic spatial 

and temporal scales (Hemingway et al. 2017). 

A recent study by the authors used UAS-acquired 

temperature measurements and variogram analysis to 

determine the sample separation distances and above ground 

altitude of the inertial subrange by assessing the agreement 

between the sample variogram and a power law variogram 

model. In that study, the power law variogram was forced to fit 

with a 2/3 exponent since the scaling exponent in Eq. 3 is 2/3. 

However, the authors found that in some cases, the sample 

variogram deviates considerably from the 2/3 power law for 

certain separation distance ranges. While the portions of the 

sample variogram that correspond to the theoretical 2/3 model 

variogram are hypothesized to be the inertial subrange, portions 

outside that limited range may hold key information for 

understanding atmospheric phenomena. These deviations may 

relate to turbulence, but it is not yet understood why they occur 

(e.g., altitudes, weather conditions, surface environmental 

factors, etc.), where they occur within the atmosphere, or 

whether their occurrence and position might be predictable, 

which could lead to better use of variograms for capturing the 

structure of atmospheric phenomena and ultimately a better 

understanding of atmospheric turbulence.  

The objective of this study is to explore the structure of the 

sample variogram across a set of vertical profiles of 

temperature to determine how the scaling exponent from a 

power model variogram fit with least squares may provide 

additional information related to meteorological conditions. 

Specifically, this study (1) develops sample variograms for six, 

vertical profiles of temperature captured during UAS flights 

that took place on 18 July 2018 in Colorado, USA, (2) fits 

power model variograms to the data using a least squares 

approach, and (3) compares the scaling exponents from the 

variograms fit to both the original data as well as detrended data 

to uncover whether inferences can be drawn on the magnitude 

of the exponent based on surface conditions. 

 

2 Materials and Data Collection 

Temperature measurements were collected on 18 July 2018 

in the San Luis Valley of Colorado, which is located in the 

south central region of the United States. Data were collected 

using a DJI M600 (DJI Shenzhen, China), which is a 

hexacopter UAS measuring 1.13 m in diameter and weighing 

9.1 kg. The payload sensor was a Young Model 81000 

ultrasonic anemomenter (R.M. Young Company, Minnesota), 

which weighs 1.2 kg (Fig. 1). The anemometer measures 

temperature at a resolution of 0.01 m s-1 with an accuracy of ± 

2° C at 30 m s-1. Data were logged at a rate of 32 Hz. 

 

 
Figure 1. DJI M600 platform at the sampling site with sonic 

anemometer attached on top (Photo: JJ) 

Six flights were conducted on 18 July in Moffat, Colorado, 

which is located at 2320 m MSL. The site is dominated by 

grassland and some deciduous shrubs (Fig. 1). Flights spanned 

the morning boundary layer transition with the first flight 

taking place at 07:08 local time (UTC-6) and the last flight 

occurring at 12:56 local time (Table 1). Flights were conducted 

under a Certificate of Authorization (COA) issued by the U.S. 

Federal Aviation Administration, which allowed the maximum 

altitude to exceed the U.S. mandated maximum of 123 m. 

Flight formations were vertical profiles with data collected only 

during the ascent to ensure temporal stationarity. 

 

Table 1. Flight information for the six profile flights 

Flight Start time End time Max altitude 

1 07:08:02 07:10:48 490.9 

2 07:59:41 08:02:42 499.2 

3 08:59:43 09:02:45 499.2 

4 10:59:56 11:01:48 499.7 

5 11:46:50 11:49:47 498.2 

6 12:30:49 12:32:32 309.8 

 

Surface meteorological conditions were obtained from a 

weather station located at the San Luis Valley Regional Airport 

(NOAA), located approximately 60 km from the sampling site 

in Moffat, Colorado. 

 

3 Methods and Calculations 

Matheron’s (1963) method-of-moments estimator was used 

to compute sample variograms from the six vertical profiles: 
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2�̂�(ℎ) =
1

𝑁(ℎ)
∑ {𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)}2

𝑛(ℎ)

𝑖=1

(3) 

where 𝑍(𝑥𝑖) is the observed value of 𝑍 at location 𝑥𝑖 separated 

by distance ℎ, and 𝑁 is the number of sample pairs (Cressie, 

1993). In the case of atmospheric profiles of temperature where 

the temperature varies with height, the mean is not stationary. 

This variation causes the intrinsic hypothesis to be invalid as 

well as causing the variogram to increase without bound (i.e., 

the variogram does not ever reach a sill). Thus, a mean function 

was applied to account for the variation in temperature with 

height. Furthermore, Stull (1988) acknowledges that by 

subtracting the mean from a random process, the turbulent part 

of the process can be isolated, and since improving 

understanding turbulence is one goal of this study, applying a 

mean function is warranted.  

Next, power model variograms were fit to the set of sample 

variograms using the equation: 

2𝛾ℎ = 𝑤ℎ𝑘 (4) 

where 𝑤 is the intensity of the variation, and 𝑘 is a scaling 

factor (Webster and Oliver 2007). The coefficient 𝑎 is equal to 

the temperature structure parameter, CT
2. The power model 

variogram is only valid when 0 > α > 2 (Chiles and Delfiner 

2012). Lastly, the scaling exponents from the power variogram 

models were compared across the six flights and interpreted in 

the context of surface atmospheric conditions. 

 

4 Results and Discussion 

The temperature profiles from the six flights are typical of the 

evolution of the atmospheric boundary layer (the portion of the 

atmosphere in contact with the Earth) across the morning. The 

first three flights (Fig. 2) show evidence of a nocturnal 

inversion, where thermal stratification results from radiative 

cooling. When this situation occurs, temperatures are cooler 

near the surface of the Earth and increase with height. During 

these nocturnal inversions, turbulence is usually suppressed by 

the strong thermal stratification. The first three flights (Fig. 2) 

show this inversion occurring around 200-250 m AGL where 

there is a discontinuity in the upward trend of the profile. 

Throughout the morning, as the sun warms the surface of the 

Earth, the air becomes mixed, and the temperature inversion is 

no longer present in the final three flights (Fig. 2).  

 
Figure 2. Temperature profiles captured on 18 July 2018 

 

As radiative heating occurs, convective turbulence increases. 

Additionally, on the day of these flights, mechanical turbulence 

caused by wind also increased throughout the morning. Data 

from the NOAA station confirm that winds were generally calm 

until 11:52, at which point they became variable at 1.3 m s-1 

with gusts measured at 7.6 m s-1. By 12:52, approximately 20 

minutes after the final flight of the day (red plot, Fig. 2), winds 

were sustained from the north at 6.3 m s-1 with gusts reaching 

11.6 m s-1. It should be noted that the final flight (red plot, Fig. 

2) was aborted at 300 m AGL due to strong winds. 

Scaling parameters (𝑘) for the power model variograms fit to 

the sample variograms ranged from 0.13 to 1.17 (Fig. 3). In 

general, scaling exponents for the three early flights, which 

occurred when there was still a nocturnal inversion in place, 

have the highest scaling exponents (Fig. 3a-c), while the three 

profiles captured during the latter part of the day had much 

lower scaling exponents (Fig. 3d-f). The first and third flights 

(07:08 and 08:59) had scaling exponents above 1.0 (Fig. 3), and 

also have the most typically looking profiles for early morning 

flights when turbulence should be supressed. The 07:59 flight 

closely resembles the 08:59 flight above 100 m AGL, but below 

that height it has an anomalous bowed structure, which may 

have contributed to the lower scaling exponent (𝑘 = 0.81).  

 

 
Figure 3. Sample (circles) and power model variograms 

(lines) with model coefficients (𝑤) and scaling exponents (𝑘) 

According to Webster and Oliver (2007), when the scaling 

exponent is close to 2, the model errors are perfectly correlated, 

and there is differentiable variation in the underlying process. 

As the scaling exponent trends to 1, it signals a random walk 

model.  As the scaling exponent trends below 1, the error terms 

become negatively correlated, and for exponents of 0, the signal 

is pure nugget. The latter three profiles all have scaling 

exponents below 1 (trending toward 0), which suggests that the 

signal is becoming pure nugget. In particular, the final profile 

of the day had a scaling exponent of 0.13, suggesting that there 

is negative spatial autocorrelation in the values at different 

separation distances. Consequently, this profile was also 
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captured latest in the day (12:30) when radiative mixing should 

have been greatest as well as during the period of strongest 

winds. Both factors suggest that turbulence in this profile 

would have been greater compared to the other profiles. 

While we did not expect any of the datasets to generate a 

power model variogram with a 2/3 exponent (the theoretical 

value for the inertial subrange), it is useful to note that the flight 

at 11:46 was close (𝑎 = 0.55). It can be seen both in the plot 

(yellow line, Fig. 2) and from observations recorded at the 

NOAA station that day indicating surface winds began to 

increase right about this time. These data suggest that sample 

variograms for profiles in which turbulence is moderate—

either due to radiative heating or wind—may follow the 

expectation of a 2/3 exponent more so than profiles in which 

turbulence is suppressed or those in which mechanical forces 

(e.g., wind) are strong.  

It is useful to note that with the power model variogram, it is 

possible to discern the smoothness/roughness of the field being 

measured. During the final flight, which was aborted at 300 m 

due to the presence of strong winds (Fig. 3f), there were large 

fluctuations (i.e., roughness) in the measured temperature 

values, which manifested in a sample variogram that did not 

increase smoothly with distance. In cases such as this, the 

power model variogram may not be particularly relevant for 

capturing spatial structure (or lack thereof). Indeed, the model 

fit to this profile produced a scaling exponent very close to 0, 

which suggests that the signal being captured is negatively 

correlated and almost pure noise.  

The overall findings of this variogram analysis indicate that 

there may be certain conditions under which variogram 

analysis is appropriate for uncovering the structure of 

turbulence in the atmosphere and other conditions when this 

technique may not be suitable. The overall decrease in the 

scaling exponent across the day suggests that the model errors 

become less correlated as radiative mixing is occurring and as 

winds are increasing, but the relative contribution of these two 

forces to the scaling exponent are not yet known.   

  

5 Conclusions 

Using geostatistical analysis, specifically model variograms, 

this research investigated how the scaling exponent can 

potentially be used to understand the spatial structure of 

turbulence in the atmospheric boundary layer. Under stable 

conditions, which typically occur early in the morning when 

radiative cooling from the prior night creates a temperature 

inversion with little turbulence, the scaling exponents of the 

variogram were above 1, indicating more spatially correlated 

errors terms. As radiative heating increased throughout the 

morning and the lower atmosphere became mixed, scaling 

exponents decreased below 1. As mechanical forces (in the 

form of wind) increased during the final flights, the scaling 

exponent trended toward 0, indicating the signal is almost 

entirely noise. While much more work is needed to fully 

understand how variograms may uncover the spatial structure 

of atmospheric phenomena, these findings demonstrate how 

geostatistical analyses can be translated to vertical 

measurements of the boundary layer to explore spatial 

autocorrelation.  
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