
1 Introduction 

An essential task for designing meaningful and appealing maps 
is an adequate symbolizing of relevant map features. Almost all 
web applications indicate populated places like towns, villages 
and hamlets by point symbols. Figure 1 shows Google Earth as 
an example. The map visualizes a part of India. The place 
symbols refer to villages. However, their placement does not 
coincide with the depicted settlement areas. Thus, these 
symbols are unclear and confuse any user. It is impossible to 
decide to which settlement a symbol belongs. 
 
Figure 1. Place symbols for villages in India by Google Earth 

(© 2016 CNES/Airbus, Google). 

 
 

The depicted map is quite typical because high-quality point 
datasets of populated places are missing for many countries. 
There are many global open datasets with place coordinates. As 
we discuss later in detail, their quality is often bad or 
unpredictable. Metadata indicating the original source and 
accuracy of the coordinates are typically missing. 

In contrast, for many countries area data for populated places 
are available. Statistical organizations often provide such place 
areas. They need them for organizing and evaluating surveys 
like population censuses. A typical example are the well-known 
TIGER files of the U.S. Census Bureau. The quality of such 
datasets is assured by official authorities and is sufficient for 
most applications. A straightforward solution would be to 
compute the centroids of those areas and to use them as place 
location. However, such an approach leads to a bad symbol 
placement when the areas include also unsettled areas.  

In the last few years, many datasets of built-up areas became 
available. A user can use such a dataset directly or can use it 
for deriving built-up areas. The basic idea is to intersect such 
land coverages with place areas and then to compute suitable 
point locations. Such an approach will at least guarantee that 
the point symbol is located over a built-up area. The 
investigation in the following of this paper will however show 
that further processing steps are suitable in order to receive 
better results. 

The rest of the paper is organized as follows: In the next 
section, we discuss the availability and shortcomings of global 
point datasets for populated places. Datasets suitable for 
extracting built-up areas are also topic of that section. Section 3 
presents the algorithmic steps for computing point locations of 
populated places. A first evaluation of the results follows in the 
fourth section. The paper concludes with a short summary and 
an outlook to future work. 
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Abstract 

For mapping applications, we often illustrate the position of populated places like towns, villages and hamlets by point symbols. However, 
suitable datasets of such point locations are often missing or have bad or unpredictable quality. This leads to unclear or confusing maps.  
In contrast, statistical institutions often provide area datasets for such places. Furthermore, datasets of built-up areas are available or can 
be computed by using open data. In this paper, the question is investigated how such datasets can be used for deriving suitable point 
locations for populated places. An algorithm is presented and the impact of preprocessing steps on the quality of the point coordinates is 
investigated. First applications of the method show promising results. 
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2 Global Datasets 

The following discussion will cover only global datasets that 
allow a general use for (web) map applications. For some 
countries or regions, more suitable datasets or datasets with 
higher quality may exist.   

 
2.1 Point Datasets for Populated Places 

Three global sources for place locations are often used or citied: 
GeoNames, OpenStreetMap and Wikipedia. 

GeoNames (http://www.geonames.org/) provides (as of 
February 2019) WGS 84 point coordinates for about 4.8 million 
populated places. Deficits include missing national identifiers, 
incomplete administrative information and missing quality 
indicators. According to our experience, the accuracy of 
coordinates is often (unpredictable) poor. 

OpenStreetMap (OSM; http://www.openstreetmap.org) 
contains – among many other information – also place 
locations. They are represented by node elements that are 
marked with the key “place” (4.4 million, as of February 2019). 
In addition to the WGS84 coordinates, such elements may 
provide information about the administrative level and the 
official place identifier. Quantitative quality indicators for 
location information are missing. Furthermore, the actual 
allocation of these attributes and the accuracy of place 
coordinates vary. 

Wikipedia provides for many articles a point coordinate that 
a user can extract by using different tools. Most practical is 
often the use of WikiData (https://www.wikidata.org/). If the 
corresponding information is stored in WikiData, the 
assignment of national identifiers to WikiData keys can be 
determined with the help of a SPARQL query. These keys 
allow retrieving coordinates. Information about origin and 
accuracy of these coordinates, however, is mostly missing. 

Overall, none of the mentioned datasets is suitable for a 
quality-assured symbolizing of populated places. 

 
2.2 Datasets for Built-up Areas 

If required on global scale, information about built-up areas 
will be typically derived from remote sensing data. Some few 
examples are the usage of Landsat 8 Operational Land Imager 
(OLI) data (Bhatti & Tripathi, 2014), the extraction from 
Advanced Spaceborne Thermal Emission and Reflection 
(ASTER) radiometer data (Miyazaki et al., 2014), and the use 
of Landsat TM/ETM+ images (Zhang et al., 2014).  

The currently most relevant data set in this context is the 
“Global Urban Footprint” (GUF), which was derived from 
radar data (Esch et al. 2013). About 180,000 individual images 
from the years 2010 to 2013 by the two radar satellites 
TerraSAR-X and TanDEM-X were processed and analyzed. As 
results, the earth’s surface is subdivided into populated and 
unpopulated areas. At the beginning of 2017, DLR provided the 
resulting datasets in two resolutions: 12m for scientific use 
(Figure 2 shows an example) and 84m non-commercial use free 
of charge (http://www.dlr.de/guf/). 

 
 
 
 

Figure 2. Build-up areas (white) of the City of Oldenburg 
(Germany) from the GUF dataset (12m). 

 
 

Some studies have investigated deriving land use from 
OpenStreetMap data. This has been done mostly in local scale, 
typically for one or several cities (Vaz & Jokar Arsanjani, 
2015) (Jokar Arsanjani et al. 2015), for smaller regions (Dorn 
et al., 2015) or single countries (Estima & Painho, 2013). We 
presented an approach for using the OSM dataset on global 
scale for deriving built-up and urban areas (Brinkhoff 2016). 
Figure 3 shows an example of built-up areas derived from 
OSM. 

 
Figure 3. Built-up areas of the City of Oldenburg (Germany) 

derived from OSM. 

 
 
3 Computing Point Locations of Populated 

Places 

As motivated in the introduction, starting point are datasets 
with built-up areas and place areas. The place areas do not 
overlap with each other. A corresponding algorithm can easily 
be sketched: 

(1) The place areas are intersected with the built-up areas. In 
respect to one place area, three cases can occur: The resulting 
geometry (a) is empty, (b) is a polygon or (c) is a multi-
polygon. In case (a), the algorithm fails for this place. 

(2) The place coordinate is located appropriately in the 
(multi-)polygon computed by step 1. 

Algorithmic solutions for step 2 are presented in the 
following subsection. In this simple form, the algorithm often 
computes inappropriate results for real data. Section 3.2 
discusses possible improvements in more detail. 

 
3.1 Computing the Visual Center 

The computation of a polygon’s centroid or the center of its 
minimum bounding box can be performed with linear effort but 
leads obviously to bad results. There are different approaches 
in the literature that determine exactly or approximatively the 
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“geodesic center” or “visual center” of a polygon. Such center 
can be characterized as the point in a polygon that minimizes 
the maximum internal distance to any point in the polygon. 
Examples are methods that calculate or approximate the center 
using Voronoi diagrams (Asano & Toussaint 1986), polygon 
skeletons (Pollack et al. 1989) or quadtrees (Agafonkin 2016). 

Garcia-Castellanos & Lombardo (2007) proposed an 
approximate method, which calculates iteratively smaller areas. 
This approach can be easily realized by using an inverse buffer 
calculation (i.e. the calculation of a buffer zone with negative 
distance). If no area remains after an iteration step, the absolute 
distance must be reduced and the step is executed again. If the 
area of the resulting (multi-)polygon is smaller than a given 
threshold (e.g., 1% of the area of the initial (multi-)polygon), 
the processing ends and returns the centroid of the resulting 
polygon or of the largest component of the resulting multi-
polygon. This approach is simple to implement, shows 
sufficient performance and its approximate nature fits to the 
intended use case. Figure 4 shows an example calculation in 
three iteration steps. 

 
Figure 4. Computation of the visual center by iterative inverse 

buffering. 

 
 

Figure 5. The calculation of the visual center on OSM data 
(top left), after removing small holes (top right) and after 
removing small holes and narrow indentations (bottom). 

 
 
 

3.2 Data Preparation 

Figures 2 and 3 show that potential built-up area datasets have 
a large number of holes and indentations. They outlast the 
intersection step, so that they are – without processing – 
included in the polygon for determining the place location.  As 
shown in Figure 5 (top left), they impair the calculation. 
Therefore, small holes (Fig. 5, top right) and narrow 
indentations (Fig. 5, bottom) should be removed beforehand. 

A further problem results from the fact that built-up areas as 
well as place boundaries are of limited accuracy. This property 
can falsify the result, especially in the case of locations whose 
built-up areas are missing in the dataset. In such cases, the built-
up area of a neighbored place may overlap slightly the place 
polygon. Figure 6 shows an example. Therefore, the place areas 
should be reduced in size beforehand. This can be achieved by 
an inverse buffering with a distance that considers the 
inaccuracies of the datasets involved. 

 
Figure 6. Without suitable preprocessing, the red dot would be 
incorrectly determined as suitable point location for the upper 

light blue place area. 

 
 

4 Evaluation 

The evaluation of a suitable placement of point symbols for 
populated places is a difficult task. In the following, we will 
compare the computed positions with coordinates that are 
defined by an official institution. The results will obviously 
differ. Nevertheless, such comparison allows a first assessment 
of our approach as well as the investigation of impacts of 
varying parameters and algorithmic steps. 

For this first evaluation, the following datasets are used (see 
also Figure 7): 

 
 The place area dataset represents the areas of about 

2,100 Austrian communes (source: http://geoland.at). 
 We computed the built-up areas from OSM data. 
 In order to assess the results, we need a reference 

dataset. This dataset was constructed from a coordinate 
database containing over 17,000 Austria localities 
provided by “Statistik Austria”. The coordinates of 
those localities that have the same name as a commune 
and that were located within this commune were 
determined. 1,752 relations could be computed by this 
approach. The following tests are performed for those 
communes. 
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Figure 7. Test datasets around the City of Linz: place areas 
(green areas with red border), built-up areas (orange) and 

reference point (green symbols). 

 
 

4.1 Evaluation without Data Preparation 

The first test was done without the data preparation steps from 
Section 3.2. Table 1 shows the results. The computation of the 
place location by the centroid of the place area (i.e. the 
commune) results in an average distance of about 1741m to the 
reference point. Using the visual center instead, the average 
distance is approximately halved to 840m. A measure for the 
best possible value that the presented algorithm can 
theoretically achieve is the minimum distance between the 
largest components of the built-up area (within the place area) 
to the reference point. This distance is on average about 412m. 

 
Table 1: Average distances (in meters) for Austria dataset. 

 
 

4.2 Evaluation of the Removal of Holes 

Table 2 shows the results when removing holes in a 
preprocessing step. The upper row refers to a removal of holes 
with an area smaller than a given absolute value. The lower row 
gives the results with a relative threshold in respect to the area 
of the whole polygon. In both cases, we can observe that larger 
thresholds have low impacts compared to the next smaller 
threshold.  

 
Table 2: Average distances (in meters) for Austria dataset 

with removal of holes. 

 
 

According to Table 2, the overall impact seems to be low. This 
observation changes when we subdivide the dataset: the subset 

S10 contains the 10% quantile of small built-up areas and the 
subset L10 the 10% quantile of large built-up areas. Table 3 
depicts the results. For subset S10, the removal of holes has no 
or sometimes negative impacts. The reason is obvious: most of 
these polygons have no holes. In contrast, subset L10 gains 
from the removal of small holes. For large holes, no or mixed 
impacts can be observed. Overall, we can conclude that the 
most robust approach is remove holes with low relative and low 
absolute thresholds; in the following, thresholds of 0.0625km² 
and 5% are used. 

 
Table 3: Average distances (in meters) for subsets of the 

Austria dataset with removal of holes. 

 
 
 

4.3 Evaluation of the Removal of Indentations 

The indentations are removed by performing two buffer 
operations with distance d and -d.  Remaining holes are 
removed afterwards. Distance d can be determined by an 
absolute or by a relative value. The following relative value 
refers to one quarter of the perimeter of the minimum bounding 
box that includes the built-up area of a commune. Table 4 
shows the results for both variants for the whole Austria dataset 
and the two subsets specified in the previous subsection. 

 
 Table 4: Average distances (in meters) for Austria dataset 

(whole & subsets) with removal of indentations. 

 
 

According to these results, relative values of d do not serve both 
small and large polygons. Therefore, the use of an absolute 
distance d seems to be more suitable. Furthermore, buffer 
distances chosen too large have negative impacts on the results: 
an average distance of 1067m for the L10 subset is 
considerably worse than all other results. Figure 8 illustrates 
that buffer distances of 500m or more significantly falsify the 
shape of the built-up areas. For the examples in Section 4.4, a 
distance d of 100m is used. 

Because there are no communes without built-up areas in the 
test dataset, the last problem addressed in Section 3.2 was not 
investigated. 

 
 

Centroid Visual Center Best Possible
Average 

Distance (m) 1741.45 840.64 412.31

no removal 0.01km² 0.0625km² 0.25km² 1km²

Austria dataset 840.64 835.94 822.45 823.43 822.42

no removal 1.0% 2.5% 5.0% 10%

Austria dataset 840.64 837.12 824.08 821.54 820.77

no removal 0.01km² 0.0625km² 0.25km² 1km²

subset S10 742.11 742.11 747.15 747.15 747.15

subset L10 964.1 944.09 895.48 915.48 905.86

no removal 1.0% 2.5% 5.0% 10%

subset S10 742.11 747.15 747.15 747.15 747.15

subset L10 964.1 900.48 900.48 900.48 900.48

no removal 50m 100m 250m 500m

Austria dataset 840.64 808.16 795.09 799.18 916.64

subset S10 742.11 767,91 712,09 653.26 663.95

subset L10 964.1 871,34 878.6 853.57 1067,91

no removal 0.25% 1.0% 2.5% 5.0%

Austria dataset 840.64 804.39 785.17 837.79 925.7

subset S10 742.11 742,20 728.73 684,97 631,89

subset L10 964.1 812.7 843.67 952,48 1213.01
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Figure 8. Original built-up areas (dark green) and added areas 
after the removal of indentations (colors according to the 

legend) for Linz area. 

 
 

Figure 9. Part of the result of the Israel dataset 
(background: © 2018 DigitalGlobe) 

 
 

 
 

4.4 Application 

In first applications, we used the proposed method to compute 
locations from area datasets of Israeli and Portuguese places. In 
case of the Israel dataset, we were able to compute a location 
for 1,088 of 1,094 populated places (see also Figure 9) by using 
OSM built-up areas. For the Portugal dataset, OSM areas were 
not sufficient. Using the GUF dataset instead, we could 
determine locations of 16,424 of 16,953 places on the mainland 
of Portugal with at least 50 inhabitants (= 96.9%). Figure 10 
depicts one place area and computed location. 
 

Figure 10. Result for a village in Portugal 
(background: © 2018 Google). 

 
 

5 Conclusions 

In this paper, we presented a technique for determining point 
locations of places by using place areas and built-up areas. The 
impacts of preprocessing steps and of their parameterization on 
the quality of results were investigated. First applications of the 
method show promising results. 

The evaluation is preliminary; it shall be extended by 
investigating further place datasets and by using GUF data in 
addition. The best possible value the presented algorithm can 
theoretically achieve for the investigated dataset (412m, see 
Table 1) is relatively high. In contrast, the minimum distance 
between any (instead of the largest) component of the built-up 
area to the reference point is much lower (129m). This 
observation indicates that the (direct and indirect) selection of 
the largest component for computing the visual center is too 
restricted. It seems that we need at least a second criterion that 
considers, e.g., the centering of the component. 
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For the case that more information is available (e.g., the 
population density or the position of the town hall), place areas 
can be reduced in size and the proposed algorithm would 
probably compute improved results. 

A further application of the proposed algorithm is possible: 
If a dataset is available with place coordinates of varying 
accuracy (see Section 2.1), the computed intersection between 
place area and built-up area can be used for assessing the 
coordinate: If it does not lie within the calculated polygon, a 
mark can be assigned that the coordinate is of questionable 
quality. 
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