
 
1 Introduction 

Recent technological developments and miniaturisation of 
tracking devices have brought unprecedented possibilities for 
animal movement studies. Movement ecology suddenly finds 
itself in a big data situation where the new sensors allow more 
and more animal species to be tracked and data to be collected 
not only on position, but also on the characteristics of the 
environment at each moment in time. This opens a large 
potential for contextualising movement analytics and 
investigating animal responses to the particular environmental 
conditions, which is one of the fundamental questions in 
movement ecology. However, methods for analysing these 
new complex data are struggling to keep up with data 
acquisition innovations. This is particularly the case for new 
sensors that produce new complex types of data, one of which 
are magnetometers, which measure the Earth’s magnetic field.  

Tri-axial magnetometers are becoming standard on animal 
tracking tags. The measurements they produce are time series 
of the Earth’s magnetic field vector, decomposed into three 
coordinate axes of a coordinate system that is fixed onto the 
body of the animal. That is, the three axes point into the 
direction of the head of the animal, across its shoulders and 
perpendicular to the shoulders. This configuration is excellent 
for posture analysis, and, often combined with 
accelerometery, allows ecologists to distinguish between 
specific posture-related movement behaviours (Williams et 
al., 2018).  

However, precisely because the magnetic measurements are 
linked to the body-based coordinate system that constantly 
changes its position and orientation in the 3D  physical space, 
they cannot be in their raw form used for identification of 
animal’s responses to the changes in strength and direction of 
the Earth’s magnetic field, something that is very important 
for study of migratory birds.  

Migratory birds make journeys that cross oceans, deserts 
and mountain ranges, navigating between their specific 
breeding and wintering areas. The ability that they use for this 
and which we still don’t understand fully is the migratory true 
navigation: the ability to navigate to a specific breeding or 
wintering area far away and in an unfamiliar location using 
only cues detected locally (Holland, 2014). A number of 
strategies have been proposed for true navigation, using 
different types of compasses (a Sun, stars, polarised light and 
magnetic compass), olfactory cues, natural infrasound (such 
as the sound of waves crashing on the shore) and visual cues 
(Wikelski et al., 2015, Åkesson and Bianco, 2016). In this 
paper we focus on geomagnetic navigation, that is, navigation 
that uses the information from the Earth’s magnetic field as 
the primary cue. 

Bird tracking studies that investigate geomagnetic 
navigation typically use tags with several co-located sensors, 
each of which collects data at different temporal schedules 
and sampling rates. This poses a problem for analysis, since 
data from different sensors are not temporally synchronised. 
Fusing these data is therefore a necessary first step.  

An additional complication is that long-distance migration 
is one of the movement types that is distinctly three-
dimensional. Unlike when staying at breeding or wintering 
sites, birds soar to high elevations to make use of different 
conditions in different layers of the atmosphere (Treep et al., 
2016). This means that any location data collected during 
migration need to include elevation.  

Further, the coordinate frame of these 3D locational 
measurements is Earth-based, either consisting of geographic 
coordinates (latitude, longitude, elevation) or projected 
coordinates using a particular projection. In contrast to the 
body-based coordinate system that magnetometers use, this 
system does not change with the movement of the bird. This 
introduces an additional problem to integration of data from 
different sensors: not only are they collected asynchronously, 
but also in different coordinate systems, one of which 
constantly changes with the movement of the bird. While 
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Step 1: Identify the Pi, Pi+1 and Pi+2 GPS points, such that 
point Mj is time-wise located between Pi and Pi+1.  

 
Step 2: Interpolate the location of the Mj point. As this is 

long-distance migration flight, we assume a direct straight 
flight between Pi and Pi+1 and linearly interpolate through 
time to find the location of Mj on the line between Pi and Pi+1. 
We note that other interpolations are possible for other types 
of movement (Long, 2015). 

 
Step 3: Calculate BNED from Braw at Mj (equations 1-15). 
 
Step 4: Calculate the intensity BI and the inclination I from 

BNED at Mj (Figure 1b): 
 

Iܤ ൌ ඥሺܤNEDNሻ2 ൅ ሺܤNEDEሻ2൅ሺܤNEDDሻ2 , 
 

ܫ ൌ arcsin ൬
NEDDܤ

Iܤ
൰ 

(16) 

 
The result is a semantically annotated trajectory which can be 
used as input into data mining (Brum Bastos et al., 2018) to 
investigate behavioural responses to magnetic conditions. 

The algorithm is currently being implemented. Here we 
present the first results on simulated data: we created a GPS 
trajectory with simulated locations in 3D which were 
collected every 30 min at 1Hz in bursts lasting 2 minutes – the 
top panel in Figure 5a shows a time series of elevation in 
these simulated GPS data. We also generated simulated 
magnetic data with a 5s burst every 10 min in each of the 
three body-based directions (x,y,z), as shown in the bottom 
three panels in Figure 5a. Times of magnetic bursts did not 
coincide with times of GPS bursts and there was no locational 
information linked to the magnetic data. This is a fairly typical 
scenario in bird tracking, where GPS and magnetic tags are 
not interconnected and each is set on its own temporal data 
collection schedule. We then ran our algorithm to create a new 
magnetic trajectory consisting of interpolated 3D locations 
between GPS points that corresponded to times in magnetic 
data and where we calculated the intensity and inclination of 
the field. Figure 5b shows this trajectory, where colour on the 
magnetic trajectory indicates the magnetic intensity at each 
point. GPS bursts are shown in light green. 
 
3 Conclusions and discussion 

In this paper we introduced an algorithm for 4D data fusion of 
GPS and magnetometer data for bird movement analysis as 
work in progress. The mathematical concepts presented here 
are currently being implemented as an R package and will be 
made openly available. The algorithm will be tested on 
simulated data as well as on real data from wild migrants – we 
will focus on migrants to high latitudes where variability in 
magnetic field is the largest across short spatial and temporal 
scales. We will also evaluate the method against different 
sampling rates of GPS points – the further apart are these, the 
coarser the information on the attitude and orientation of 
migrating birds. An evaluation study with different sampling 
rates may lead to a recommendation to what is the optimum 
rate for GPS and magnetic data fusion, which the ecologists 
can then weigh against other factors, such as battery life. 

With the introduction of a myriad new sensors, movement 
ecology is rapidly moving towards a new paradigm, where we 
can “see” the environment through the eyes and senses of the 
animals that humans do not possess. This “animals as sensors” 
concept has been successfully introduced in marine tracking, 
for example, elephant seals migrating around Antarctica and 
carrying oceanographic sensors act as moving platforms for 
collection of oceanographic data, which is crucial in the 
development of contemporary climate change models 
(Charrassin et al., 2008). Migrating birds have been used as 
meteorological observers of wind conditions over remove 
areas, such as the open ocean (Treep et al. 2016). However, 
magnetic bird-based measurements have not been considered 
in the same way. While the main goal of our work is to 
understand the mechanisms of the geomagnetic bird 
navigation, in the light of the poorly understood accelerated 
changes of the magnetic field (Witze, 2019), real-time 
magnetic bird data could also be used to improve our 
understanding of the dynamics of the Earth’s magnetic field.  
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