
1 Introduction 

Maintaining the quality of life in urban areas presents an 

increasing challenge, considering the backdrop of advancing 

climate change and urbanization. In this context, urban trees 

play an important role - amongst other aspects - due to their 

manifold effects on the local climate (FAO, 2016). For spatial 

planning and urban management strategies, information about 

this resource is therefore an important basis for decision-

making. 

While on-site acquisition is time-consuming, labor-intensive 

and costly, a large amount of (optical) remote sensing data is 

readily available. Therefore, the application of suitable 

methods or rather the development of appropriate tools to 

analyze the data and derive relevant information is crucial. 

Machine learning methods provide an efficient way to 

analyze large amounts of data. During the last decades, a fast 

development has taken place in this field, especially with 

respect to artificial neural networks (ANNs) (LeCun, Bengio 

& Hinton, 2015; Schmidhuber, 2015). Considering image or 

raster data, convolutional neural networks (CNNs or 

ConvNets) present an efficient and generic tool for 

information retrieval. They have therefore become one of the 

most widely used methods for both image and pattern 

recognition (Krizhevsky, Sutskever & Hinton, 2017; 

Simonyan & Zisserman, 2014) as well as for object detection 

and localization (Erhan et al., 2014; Szegedy, Toshev & 

Erhan, 2013). Originally developed in the domain of computer 

vision, this approach has already been adapted to various tasks 

in remote sensing, such as land cover and land use (LCLU) 

classifications (Castelluccio et al., 2015; Hu et al., 2015). 

This work investigates to which extent CNNs help to derive 

different types of information on urban trees from remote 

sensing data. For this purpose, three different models are 

trained (using three different input formats for each of them): 

 CNN1: detection of tree crowns (classification of input 

data as tree or background), 

 CNN2: classification of tree genus, 

 CNN3: determination of tree age, height and crown 

diameter (regression). 

 

 

2 Data 

The data basis used for this work comprises digital 

orthophotos (containing red, green, blue and infra-red 
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namely tree location, genus, height, age and crown diameter. Digital orthophotos (DOPs) as well as digital surface and elevation models 
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trained models are applied to new data using a sliding window. 

The results of this work confirm the great potential of CNNs as generic tools for the analysis of image or raster data shown in previous 
studies. Upon application to test data, the detection of input images containing visually distinguishable tree crowns is performed with an 

accuracy of up to 99%. For the classification of tree genera, an overall accuracy of up to 72% is reached, whereas confusion matrices show 

differences in accuracies for single genera. The remaining target variables are predicted with minimal error values (RMSE) of 9 a for the 
tree age, 1.8 m for the tree height and 1 m for the crown diameter. As the amount of example data is limited, a strong influence of its 

composition and quality can be observed. 
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channel) with a spatial resolution of 0.2 m as well as digital 

surface and elevation models with a resolution of 2 m each, 

covering a selected region of 40 km² in the Greater Leipzig 

area (Saxony, Germany). Furthermore, the street tree 

inventory of the city of Leipzig (Stadt Leipzig, 2018) is used, 

containing coordinates and further information (tree genus, 

age, height and crown diameter, amongst others) of 16,406 

street trees located in this area. 

For the development, more precisely the training and 

evaluation of ANNs, supervised learning is the most 

frequently used method (LeCun, Bengio & Hinton, 

2015:p.436), requiring classified data, i.e. a set of examples 

consisting of pairs of input data (images) and the related 

outputs (labels). For this work, the information of the street 

tree inventory is used to semi-automatically extract squared 

patches of different sizes from the above mentioned raster 

data, each containing a centered tree crown. Then, the same 

number of image patches containing other LCLU classes 

(background) is created. Each of these patches is labeled 

according to the target variables of the CNNs (Figure 1). 

 

Figure 1: Example data (DOP shown in true color) consisting 

of input data (image patches, e.g. 50x50 pixels) and labels 

 
 

 

3 Methods 

3.1 Data Preprocessing 

For data preprocessing, ArcGIS with the site package ArcPy 

as well as the Python libraries numpy (Oliphant, 2006) and 

keras (Chollet & others, 2015) are used. 

To speed up computations and avoid the ‘curse of 

dimensionality’ arising from the definition of too many 

predictors, redundant information is excluded. Analysis of the 

grey values at the center points of the extracted image patches 

shows high correlations (0.81 to 0.86 for Kendall’s τ) between 

the three color channels. The number of bands is therefore 

reduced from four (R, G, B, IR) to two (NDVI, G). DSM and 

DEM are aggregated as nDSM (normalized digital surface 

model) and resampled to the same resolution as the DOPs 

(0.2 m). As a result, the input image or raster data (predictors) 

used for the CNNs comprises three bands (NDVI, G, nDSM) 

which are normalized and converted to numpy arrays for 

further processing using Python. 

The tree locations as recorded in the street tree inventory 

differ from the positions of the tree crowns observed in the 

DOPs due to tilting effects. Therefore, a manual shift of the 

coordinates is necessary so that they are located at the center 

of the tree crowns in order to extract patches containing one 

entire, centered tree each. This process is very time-

consuming. Thus, the number of examples (32,812 in total) 

derived from the available data is rather small compared to 

studies carried out in the domain of computer vision (e.g. 

Krizhevsky, Sutskever & Hinton, 2017). However, within the 

field of remote sensing, the amount of example data used for 

this study is remarkable (cf. Penatti, Nogueira & dos Santos, 

2015). 

To account for different scales or rather crown diameters, 

three input formats are used for the CNNs: 24x24, 50x50 and 

100x100 pixels (Table 1). According to the distribution of the 

crown diameter in the original data, the number of extracted 

examples differs for each format. In addition, the same 

number of image patches containing a background class is 

created. For this purpose, gray values at the tree locations are 

analyzed and image parts having similar values (≥ μ – 0.5*σ) 

are excluded while random sample points are distributed in 

the remaining area. Then, image patches centered at these 

points are extracted, according to the procedure described for 

the tree locations. 

 

Table 1: Extraction of example data at three different 

scales/formats, according to the crown diameters recorded in 

the street tree inventory 

Input 

format 

[pixels] 

Crown 

diameter 

[m] 

Number of examples 

Trees Back-

ground 

Total 

24x24 ≤ 4.8 7,981 7,981 15,962 

50x50 > 4.8 

and ≤ 10 

3,958 3,958 7,916 

100x100 > 10 4,467 4,467 8,934 

 

The resulting raster data is labeled according to the target 

variables of the models to be used as examples during 

supervised learning. For this purpose, the three datasets are 

again divided into three parts to obtain training data (80%; 

used for adjustment of model parameters, i.e. weights), 

validation data (10%; used for adjustment of hyperparameters 

during training) and test data (10%; used for model evaluation 

after training). 

 

 

3.2 Design and Training of CNNs 

Three different CNNs (CNN1, CNN2, CNN3) are trained for 

each of the three input formats (24x24, 50x50 and 

100x100 pixels), which gives nine models in total. All of them 

basically share the same architecture, but differ in the first and 

last layer due to the different inputs (image formats) and 

outputs (target variables). Both the development and the 

application of the CNNs is carried out using Python, namely 

the libraries numpy (Chollet & others, 2015), matplotlib 

(Hunter, 2007) and keras (Chollet & others, 2015). 

The basic architecture (Figure 2) comprises two 

convolutional layers (Conv2D in keras), each having 40 filters 

with a size of 5x5 and 10x10 pixels and followed by max-

pooling layers (MaxPooling2D) with a size of 2x2 and 

4x4 pixels and a stride of 2 and 4 pixels, respectively. The 

output of the last pooling layer can be interpreted as a feature 

vector which serves as input for two fully connected layers 

(Dense) with rectifier activation function (Nogueira, Penatti & 

dos Santos, 2017), the first having 100 neurons (also called 
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rectified linear units or ReLUs). The number of neurons in the 

last layer as well as the type of activation function depends on 

the output (target variable) of the CNN. 

The first model (CNN1) is specialized in the detection of 

tree crowns or rather input images containing trees. Therefore, 

the example data used for development comprises all of the 

extracted image patches (Table 1), divided into three parts for 

training and evaluation (Table 2). All images are labeled as 

tree (1) or background (0). The last layer of CNN1 contains 

one single neuron with sigmoid activation function, so the 

output value (p ϵ [0, 1]) corresponds to the predicted 

probability that the input data contains a tree. 

 

Figure 2: Basic architecture of the CNNs 

 
 

Table 2: Number of examples in training, evaluation and test 

datasets for all CNNs 

Model 

Format 

[pixels] 

Number of examples 

Training Validation Test 

CNN1 

24x24 12,770 1,596 1,596 

50x50 6,332 792 792 

100x100 7,148 893 893 

CNN2 

24x24 5,094 645 638 

50x50 2,572 326 310 

100x100 3,298 410 430 

CNN3 

24x24 6,366 810 805 

50x50 3,167 399 392 

100x100 3,564 444 459 

 

For the development of the remaining two CNNs, only the 

example data created from tree locations are used (cf. Table 

1). 

CNN2 is specialized in the classification of tree genera. 

While a total of 33 different genera can be found in the 

original data used from the tree inventory, many of them 

occur not more than once or twice. Therefore, only the five 

most frequent genera for each input format are used (Figure 

3). Even though this reduces the amount of example data (cf. 

Table 2), this approach is necessary for a successful network 

training. The distribution of the selected genera in the training, 

validation and test datasets is similar. However, as shown in 

Figure 3, some genera (e.g. Tilia) are very dominant while 

others are scarce (e.g. Robinia). 

The regression model (CNN3) has three different output 

layers, each containing a single neuron with linear activation 

function to compute the target values tree age, height and 

crown diameter. 

During training, stochastic gradient descent (SGD) and a 

batch size of 50 (Ruder, 2017) is used for adjustment of the 

model parameters, also called weights. Except for one case, 

all models are trained over 10 epochs. The learning rate is 

adapted automatically using RMSProp optimizer (Ruder, 

2017:p.7) to accelerate the training. In addition, dropout 

(Srivastava et al., 2014) is applied to the pooling layers and 

the first fully connected layer (cf. Figure 2), using only a 

random choice of 25% or 50% of the neurons during training. 

For each of the nine models, 10 different training 

alternatives are tested: 

 original: the CNNs are created and trained as 

described above 

 data augmentation: training data is modified using 

a random shearing (max. 10°) and rotation 

(max. 360°); due to the higher variation in the 

example data, the number of epochs is increased 

to 20 

 L1- and L2-regularization: a penalty term is added 

to the loss function of the second convolutional 

layer as well as the first fully connected layer to 

reduce the value of irrelevant weights using a 

regularization rate of 1%, 10% or 50% for each 

variant (L1/2) 

 reduction: the model complexity is decreased by 

reducing the number of filters in both 

convolutional layers as well as the number of 

neurons in the first fully connected layer by 25% 

or 50% 

The selection of the best performing models is based on the 

metrics resulting from the test data, i.e. the maximum overall 

accuracy for CNN1 and CNN2 and the minimum RSME for 

CNN3. Given similar values, less complex models are 

favored. 

 

Figure 3: Distribution of the five most frequent tree genera in 

the example datasets used for training of CNN2

 
 

 

3.3 Application to new Data 

Remote sensing data usually consists of large-size raster data 

comprising several thousands of pixels, which cannot be used 
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as input for CNNs due to the enormous computing effort. 

Therefore, models are trained for smaller input images. 

To apply these models to new data, it firstly needs to be 

preprocessed in the same way as the inputs of the example 

data (creation of NDVI-G-nDSM composite, resampling, 

normalization, conversion to numpy array). Then, a sliding 

window of the same size as the input format of the CNNs is 

used to scan the data and calculate model outputs for each 

part. Because numpy arrays do not contain any spatial 

reference, the (spatial) coordinates of the upper left corner of 

the scanned raster and the image coordinates of the window 

positions are used to locate the model outputs in the original 

geodata. 

To reduce computing time, outputs of the models 

specialized in tree data (CNN2, CNN3) are only calculated for 

image patches classified accordingly by CNN1. To identify a 

tree, a threshold value of p ≥ 0.98 is determined empirically. 

In addition, the sliding window is moved by the length of its 

edges (i.e. 24, 50 or 100 pixels) instead of only one pixel in 

case a tree has been detected at the previous window position. 

This avoids processing of overlapping image parts. 

 

 

4 Results 

4.1 Evaluation of trained Models 

The performance of all CNNs is assessed using the test 

datasets as input for the trained models. According to the 

results (metrics), the best models are selected and applied to 

new data (Table 3, Figure 4). 

 

Table 3 Selected CNNs with best performance on test data 

Model 

Format 

[pixels] 

Model 

Type [1] Overall accuracy [%] 

CNN1 

24x24 50% 

reduction 

97 

50x50 25% 

reduction 

98 

100x100 original 99 

CNN2 

24x24 25% 

reduction 

69 

50x50 50% 

reduction 

65 

100x100 25% 

reduction 

72 

Model 

Format 

[pixels] 

Model 

Type [1] 

RMSE 

Crown 

Ø [m] 

Height 

[m] 

Age 

[a] 

CNN3 

24x24 50% 

reduction 

1 1.8 9 

50x50 25% 

reduction 

1.5 3 28 

100x100 50% 

reduction 

2.2 3.6 31 

[1] see explanations in 3.2 

 

The best overall accuracy for CNN1 is achieved with the 

largest input format (100x100 pixels). For the remaining 

formats, a maximum overall accuracy of 98% (50x50 pixels, 

25% reduction) and 97% (24x24 pixels, 50% reduction) is 

obtained. 

Concerning CNN2, the best results are also reached using 

the less complex model variants, namely 50% reduction 

(50x50 pixels) and 25% reduction (24x24, 100x100 pixels), 

showing an overall accuracy of 65 to 72%. However, this 

value is not sufficient to describe model performance in this 

case, as it provides no information about class specific 

classification accuracy. Analysis of the confusion matrices 

shows, that dominant genera, especially Tilia, are predicted 

with a much higher accuracy than less frequent genera, e.g. 

Acer (Table 4; cf. 3.2, Figure 3). In general, misclassifications 

occur in favor of these dominant classes, while others may not 

be predicted at all for the test data. 

 

Table 4 Confusion matrix of CNN2 (for application on test 

data); exemplarily shown for best performing model of input 

format 24x24 (25% reduction) 

 A. C. Pl. Py. T. ∑ 

UA [1] 

[%] 

Acer 0 0 14 1 41 56 0 

Carpinus 0 2 5 1 22 30 7 

Platanus 0 0 106 0 45 151 70 

Pyrus 0 0 5 13 31 49 27 

Tilia 0 0 28 4 320 352 91 

∑ 0 2 158 19 459  

PA [1] 

[%] 
- 100 67 68 70 

overall acc.: 

69% 
[1] PA: producer’s accuracy, UA: user’s accuracy 

 

In the case of CNN3, the selected models present a 

compromise, as minimal RMSE values for the three outputs 

(tree age, height and crown diameter) are sometimes achieved 

by different models. Again, the less complex models - 25% 

reduction (50x50 pixels) and 50% reduction (24x24, 

100x100 pixels) - show the best results yielding at errors 

(RMSE) of 9 to 31 a for the tree age, 1.8 to 3.6 m for the 

height and 1 to 2.2 m for the crown diameter. 

 

Figure 4: Test examples and predictions of selected models 

(50x50 pixels); test labels specifying the correct values are 

given in brackets; true color images are shown in the first row 

for visualization only, the second row contains the composite 

raster data used as input (R=NDVI, G=Green, B=nDSM) 
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4.2 Application of best Models to new Data 

The selected models are applied to new data, i.e. input data 

(DOP, DSM, DEM) that has not previously been used for the 

extraction of examples. For this purpose, the data is 

preprocessed and sliding windows are applied according to 

the procedure described in 3.3. Due to the lack of reference 

data, a validation of the results is not possible in this case. 

Instead, a visual and statistical analysis of the network outputs 

is given in this section. 

Trees are located according to the outputs of CNN1 by 

determining the spatial coordinates at the center of all window 

positions for which a value of p ≥ 0.98 is predicted. 

Visualization of the predicted crown area is possible by 

combining this information with the crown diameter of CNN3 

(Figure 6). Regarding solitary street trees - as contained in the 

example data - the resulting delineation of the crowns seems 

quite correct, while in areas where tree crowns are connected 

and overlapping, e.g. in parks or forests, a regular pattern of 

predicted tree locations is distinguishable, resulting from the 

positive classification of multiple windows in neighboring 

positions and the determined stride according to the window 

sizes (Figure 7). 

Concerning the tree genera, statistical analysis shows that 

the dominant class in the example data, Tilia, is predicted in 

more than 60% of the cases for all formats (Figure 5, cf. 

Figure 3). Besides, the predictions for the two smaller formats 

are limited to four genera, despite five different classes have 

been used for training. Considering the results for the test data 

described above (cf. 4.1, Table 4), this has been expected. 

However, misclassifications are inevitable in this case, as the 

models are trained for a limited set of genera. As the tree 

genus is not visually distinguishable in the DOPs, the model 

predictions cannot be verified. 

The predicted values of CNN3 for all three target variables 

are also clustered around single values (Figure 5). Again, 

those values are similar to those occurring most frequently in 

the example data used for model training. 

 

Figure 6: Crown area (blue circles, created from predicted tree 

locations and crown diameters) resulting from application of 

CNNs with input format 24x24 pixels 

 
 

Figure 7: Predicted tree locations resulting from application of 

CNN1 with input formats 24x24 pixels (blue), 50x50 pixels 

(green) and 100x100 pixels (red) 

 
 

Figure 5: Predicted tree genera (CNN2), tree age, height and crown diameter (CNN3) 

 
 



AGILE 2019 – Limassol, June 17-20, 2019 

 

 

5 Conclusion 

The results of this work confirm the great potential of CNNs 

concerning analysis of image or raster data, also in the domain 

of deriving and enriching urban tree inventories. The fact that 

all classification and regression models (CNN1, CNN2, 

CNN3) rely on the same architecture shows the high 

flexibility and genericity of this type of ANNs as tools to 

derive urban tree features. 

However, quantity as well as quality of the available 

example data turns out to be crucial for model development. 

While a simple distinction between image patches containing 

trees and those containing background (CNN1) is possible 

with a very high accuracy (on test data), satisfying results for 

more complex tasks (CNN2, CNN3) cannot be achieved for 

all models. In these cases, predictions show a strong bias 

towards dominant target values present in the example data. 

To better assess the suitability of CNNs for the issues 

investigated in this work, further studies are necessary using a 

larger data basis (more tree genera, different recording time of 

remote sensing data, etc.). Nevertheless, this work shows 

remarkable results, considering the limited amount of example 

data (3,208 to 15,962 examples for each CNN), which is 

rather small compared to studies within the domain of 

computer vision. 

Moreover, a comparison to existing techniques, such as 

segmentation methods (eCognition) or maximum likelihood 

classification (ERDAS Imagine). 

A more precise localization of single trees is possible by 

delineating the crown using a bounding box. This approach 

can also be realized using CNNs, but appropriate example 

data is required. Further improvements and enhanced 

implementations of the proposed approach could lead to an 

almost fully automatized workflow for the creation and 

maintenance of (urban) tree inventories. 
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