

1 Introduction

The problem of assigning names or identifiers to places on the
Earth has been addressed with different approaches.

Geographical names and street addresses are a solution for
some places, but they are neither systematic nor unique and,
in many cases, their positions and shapes are only
approximate.

Coordinate systems, e.g. geodetic coordinates, can be used
to identify points on the surface of the Earth with a pair of
Real numbers. Using Real numbers as identifiers, i.e. finite
length strings, requires rounding them. Besides this, most
Real numbers can’t be represented exactly in the standard
format for floating point Real numbers in computers and are
automatically approximated (IEEE, 2008), although this can
be addressed with alternative encodings that can be as precise
as needed.

Global grids provide an alternative by partitioning the Earth
into cells. Discrete Global Grid Systems (DGGSs), multi-
resolution grids with non-overlapping, equal-area, uniquely
identified cells, provide a solution to identify places on Earth
by pointing out, for instance, the smallest cell, up to a
maximum resolution, which includes those places.

We are often interested in identifying places with complex
shapes. On a DGGS, this means identifying a set of cells, not
only one. This paper explores options to give unique
identifiers to sets of cells, and thus to areas with any shape.

2 Related work

A Discrete Global Grid System (DGGS) is a spatial reference
system based on a hierarchical multi-resolution grid of cells

which form equal area tessellations of the surface of the Earth,
without any overlapping, at every resolution (Purss, 2017).
Besides this, a DGGS must define methods to address, i.e.
identify, each cell, assign data to the cells and perform
algebraic operations on them and their data. In this paper we
use the term DGGS as defined by this OGC abstract
specification.

The OGC specification does not require a given system to
create the cell addresses as long as they fulfill the
requirements. In (Amiri, et al., 2015) they describe three
general strategies: hierarchy-based, space-filling curves and
axes-based indexing

With a hierarchy-based index you give an identifier to the
cells of a given resolution, and then you use those identifiers
as prefixes for the cells at the next resolution. The rHEALpix
DGGS uses this (Gibb, 2016). In rHEALPix, N, S, O, P, Q
and R are the six identifiers for the cells of resolution 0. If you
subdivide N into 4 cells (nside = 2) at resolution 1, their
identifiers will be N0, N1, N2 and N3. If you subdivide N0
into 4 cells at resolution 2, their identifiers will be N00, N01,
N02 and N03. And so on.

Space-filling curves are 1D curves that, when created
recursively, end up covering a 2D space. The identifiers are
typically constructed with digits from a suitable numeric base
which depends on the refinement (i.e. on how you subdivide
the cells). For each additional resolution you add a new digit.
For example in (Bartholdi & Goldsman, 1999) they define an
indexing method based on the Sierpinski space-filling curve
for triangular cells and base 2 digits, with valid cell ids such
us 0 (1 subdivision), 011 (3 subdivisions) or 00000 (5
subdivisions).

In axes-based indexing you define m axes (e.g. m = 2 for a
2D DGGS) and enumerate the cells along those axes.
Refinements are solved by adding an additional number for
the resolution. In the cube-based example in (Amiri, et al.,

On the problem of providing unique identifiers for areas with any shape
on Discrete Global Grid Systems

 Rubén Béjar1, Miguel Á. Latre, Francisco J. Lopez-Pellicer,
Javier Nogueras-Iso, F. Javier Zarazaga-Soria

Aragon Institute of Engineering Research / Universidad
Zaragoza

1rbejar@unizar.es

Abstract

This short paper explores the problem of assigning a unique identifier to any area, i.e. arbitrary size and shape, defined on a Discrete
Global Grid System (DGGS). The problem is framed in terms of the components of any DGGS, multi-resolution cell tessellations with
unique identifiers for each cell, what takes us to areas defined as sets of cells. Two solutions to create unique identifiers for sets of cells, and
thus for any area on a DGGS, are experimentally compared to measure their performance, the shorter the better, in different cases. The issue
of constraining identifiers to a fixed maximum length is also considered. Some calculations are provided in order to give an idea of the
magnitude of these two problems and the scope of the proposed solutions.
Keywords: DGGS; Geocoding; Addressing.

AGILE 2019 – Limassol, June 17-20, 2019

2015, Figure 10), a cell at resolution 1 can have an identifier
such as [3,(0,0)]1 (third face of the cube, lower-left cell at
resolution 1), which would be subdivided into 4 cells at
resolution 2 with identifiers [3,(0,0)]2, [3,(0,1)]2, [3,(1,0)]2
and [3,(1,1)]2.

Alphanumeric geocoding systems provide unique, human
friendly identifiers for locations which are either points or
cells of the same shape, usually squares or triangles, with a
limit on the resolution or accuracy. They are often based on
Discrete Global Grids, but not always. A well-known example
is what3words (Jones, 2015), which assigns three fixed words
to each square cell of 3m × 3m on the Earth and is being
proposed as an alternative addressing system (Howgego,
2017). It has some extension proposals, such as (Jiang &
Stefanakis, 2018) which would add variable resolution and
support for a vertical dimension by using up to five words,
and even some satiric alternatives, such as what3fucks* which
uses swear words and triangular cells. There are other
systems, such as 3geonames†, which encodes points, not cells,
with an accuracy of up to 1m, and GeoKeys‡ which encode
1m × 1m squares with 4, 4-letter words.

3 Creating unique identifiers for areas on a

DGGS

A DGGS must provide a way to address each of its cells with
a unique identifier (a Cell Unique Identifier, CUID). Any
area on a DGGS is formed by a set of cells, possibly mixing
cells of different resolutions.

There are many possible areas in any DGGS. For instance,
in a DGGS that has 6 cells at resolution 0, and refines each
one into 9 at the next resolution level, there will be 6 × 9R
cells at resolution R, e.g. 486 at R=2. The number of areas
that can be defined by using only cells of a given resolution is
equal to the number of non-empty sets of cells that can be
chosen at that resolution, which is 2(# of cells at resolution)-1.
Following the example, we have 2486-1 possible areas with
cells of resolution 2, which is a number with 148 digits.

In practice, we may not need to define areas with a very
large number of cells thanks to the hierarchical nature of the
DGGSs. As an example of this, Figure 1 shows that 11 cells at
resolution R (upper square) are just 2 cells at resolution R-1
(lower square) and 3 cells at resolution R.

The example in Figure 1 also shows that areas on a DGGS
may be defined with different sets of cells. For instance the
cell with CUID N1 and the cells with CUIDs N10, N11, N12
and N13 cover the same area. Let’s define an optimal CUID
set for an area on a DGGS as the set of the CUIDs of the
smallest set of cells that cover exactly that area. Given the
requirements of a DGGS (non-overlapping cells which are a
tessellation at every resolution, and exactly one way to refine
cells) it follows that there is exactly one optimal CUID set for
any area on a given DGGS.

* http://www.what3fucks.com/
† https://3geonames.org/
‡ https://geokey.xyz/

Figure 1: The same area with cells of the same resolution, and
with cells of two different resolutions

Once we have an optimal CUID set, for example {N11,

N12, N2, N3}, we need to encode it as a sequence of symbols
that can be used as a unique identifier. Let’s call this an Area
Unique Identifier (AUID).

For this, we need to order the elements of the set with any
total order relation, for instance the alphabetical order, and to
encode that ordered set as a sequence. The simplest option is a
concatenation of the ordered CUIDs: N11N12N2N3. It may
be necessary for some DGGSs to use an additional symbol to
separate the CUIDs so it is possible to parse the resulting
AUID and extract the original CUIDs.

As we will need to store these AUIDs and, possibly, to send
them over the Internet, we prefer them as short as possible.
The multi-resolution, hierarchical structure of cells in a DGGS
suggests a tree structure as a natural choice to encode them in
an efficient way.

Tries, also known as prefix trees, are ordered trees which
can be used to store data associated to certain keys (Knuth,
1998, p. 192). These keys are usually strings of characters,
and a common use of tries is just storing those strings. The
structure of a trie allows for a compact representation of a
number of strings. For example, the sequence <N11, N12, N2,
N3> can be expressed as a trie as shown in Figure 2.

Figure 2: A trie for the sequence <N11, N12, N2, N3>

To use a trie as an AUID, we need to linearize it as a

sequence. The Balanced Parentheses (BP) strategy is simple
and generates short strings (Munro & Raman, 2001). The BP
strategy allows to encode the structure of any tree, but we
need to differentiate trees with the same structure that
correspond to different CUID sets. We thus need to encode
the CUIDs along with the parentheses. For instance, the trie in
Figure 2 can be expressed as a BP string as
(R(N(1(1($))(2($)))(2($))(3($)))), using R to denote the root

AGILE 2019 – Limassol, June 17-20, 2019

node, and $ to denote the special end node (the white one in
the Figure).

Including the CUIDs in the BP string provides us with an
opportunity to make that string shorter. As every branch is
labeled with one symbol, including R and $, we do not need
the opening parentheses because their role in the BP string can
be fulfilled by those symbols. This short BP string for the trie
in the Figure would be RN11$))2$)))2$))3$)))).

3.1 Experimental results

The BP strings shown in the previous section are not shorter
than the concatenation of the CUIDs. However the example
already shows two important characteristics:

1. Parentheses in BP strings are just two symbols, or just

one if using the short version, repeated many times.
Any lossless compression algorithm will make a
significant reduction in their length because of this.

2. The trie benefits from some repetitions in the original
CUIDs. For instance there are only two 1s in the BP
string, but there are three in the concatenation of
CUIDs. The longer the CUIDS, the more relevant this
saving will become.

Those two characteristics suggest that with sufficiently large

CUIDs, the compressed BP strings may be shorter than the
compressed concatenations§.

To test this hypothesis, we have run a number of
simulations, see Figure 3, generating different random sets of
CUIDs and creating the AUIDs for them as simple
concatenations (blue lines with squares), tries expressed as BP
strings (red lines with stars) and tries expressed as BP strings
without the opening parentheses (green lines with circles). In
the three cases we have applied the same lossless compression
algorithm to the resulting AUIDs.

The code used to run these experiments and to produce the
Figure 3 is available at https://github.com/IAAA-Lab/dggs-
auids as a Jupyter Notebook** with code in Python 3.6.

In each plot in Figure 3, the number of CUIDs used to
generate the AUIDs is in the horizontal axis, and the size of
the AUIDs, in bytes, is in the vertical axis. Each plot is
labeled with the range of resolutions where the random
CUIDs have been produced, if the set is an optimal CUID set
or not, and the indexing strategy used (axis-based following
the pattern described in Section 2, or rHEALPix style, i.e.
prefix-based, with nside = 2 or with nside = 3). For instance,
“Res [6,9]. Non-optimal set, axis CUIDs”, means CUIDs of
resolutions 6, 7, 8 and 9, with axis-based indexing and the set
is not optimal (there may be repeated CUIDs, and it is
possible that there are more cells than needed).

For this initial work, we have chosen two different indexing
strategies, and ranges of resolutions which allow us to
generate thousands of CUIDs. We have also focused our
efforts on non-optimal sets, as the optimal ones are far slower
to generate with the current version of the testing scripts (that

§ Compression will be in general a good idea as we intend to

have identifiers which are as short as possible.
** https://jupyter.org/

is the reason why they have been tested with less CUIDs). Of
course, the three different ways to create the AUIDs have
always been compared among them under the same
conditions.

The results show that the trie as a compressed BP string
without the opening parentheses, i.e. ‘short BP string’, is
generally shorter than the concatenation and compression of
the CUIDs, although the differences are not very large. In the
best cases, compressed short BP strings are around 25%
shorter than the compressed concatenations. These differences
usually tend to grow as the size of the CUID sets increases.
However this result is not universal, and there are a few cases
where the compressed concatenations of the CUIDs are
slightly, around 2%, shorter than the compressed BP strings.

3.2 Shortening the AUIDs

The number of the AUIDs that can be generated is huge for
any DGGS, so they may need to be very long. Following the
previous example, to identify 2486-1 possible areas at
resolution 2, at least 486 bits, some 60 bytes, are required. To
identify all the areas at resolution 10 (cells of around 100 m
×100 m in that example) we would need to use identifiers of
20,920,706,406 bits (6 × 910), some 2.6 Gigabytes. Producing
short AUIDs, with a fixed maximum length, may be
necessary for instance to use them safely as part of URLs.

We can associate short identifiers to AUIDs in any arbitrary
way, for instance using correlative numbers, but a better
solution is using a hash function, because this guarantees that
anyone can generate the same short version for the same
AUID. With, for example, 256 bit hashes we have 2256
possible unique identifiers. Although there are many more
possible AUIDs in any DGGS, 2256 is approximately 1.16 ×
1077, which is still huge.

It is impossible to recover the CUIDs from the hash of an
AUID. In order to maintain that correspondence, we need to
store the AUIDs with their hashes, and to provide a lookup
mechanism to recover the AUID for any given hash. So even
if we wanted to use only the hashes, making the original
AUIDs as short as possible is still a relevant issue to save
storage space.

4 Conclusion

In this short paper we have started to explore the problem of
providing identifiers to places on Earth when we need them
for arbitrary areas defined on a DGGS.

We have shown that the problem consists of choosing the
smallest set of cells that covers our area of interest, up to a
maximum resolution, and producing a sequence of symbols
that encodes the DGGS identifiers of those cells.

We have also shown that a shorter, fixed length, version can
be produced with a hash function. This can be used where
there are strict limitations on size, as long as we provide a
lookup mechanism to recover the original CUIDs from a hash.

There are many proposed DGGSs, with different cell
shapes, refinement strategies and indexing schemes. Our
initial experiments have included two different indexing
schemes, axis-based and prefix-based, and a refinement

AGILE 2019 – Limassol, June 17-20, 2019

strategy where each cell at resolution R+1 is fully contained in
a single cell at resolution R. For those, we have shown that
encoding the cell identifiers in a trie and then linearizing it as
a compressed BP string typically produces shorter identifiers
than the simplest approach, which is a compressed
concatenation.

Identifiers such as those explored in this paper are mainly
intended to facilitate the automatic storage, search and
retrieval of datasets georeferenced on DGGSs. Nevertheless,
systematic ways to produce human-friendly names for them
could be designed. The main issue would be that there are too
many possible different areas. But for limited resolutions or
certain subsets, this could be solved.

As future work, there are several paths to explore:
 More indexing schemes and refinement

strategies.
 Areas based on real features instead of randomly

generated.
 New strategies to produce shorter AUIDs.
 Mechanisms to produce human-friendly strings

for the AUIDs.

Acknowledgments

This work has been partially supported by the Aragon
Government (project T59_17R) and the Spanish Government
(project TIN2017-88002-R).

References

Amiri, A. M., Samavati, F. & Peterson, P., 2015.
Categorization and Conversions for Indexing Methods of
Discrete Global Grid Systems. ISPRS International Journal of
Geo-Information, Volume 4, pp. 320-336.

Bartholdi, J. & Goldsman, P., 1999. Continuous Indexing of
Hierarchical Subdivisions of the Globe. International Journal
of Geographical Information Science, Volume 15, pp. 489-
522.

Gibb, R., 2016. The rHEALPix Discrete Global Grid
System. s.l., IOP Conference Series: Earth and Environmental
Science, vol 34, p. 012012.

Howgego, J., 2017. Where in the world?. New Scientist,
Volume 235, pp. 30-32.

IEEE, 2008. IEEE Standard for Floating-Point Arithmetic,
s.l.: The Institute of Electrical and Electronics Engineers, Inc..

Jiang, W. & Stefanakis, E., 2018. What3Words Geocoding
Extensions. Journal of Geovisualization and Spatial Analysis,
Feb, Volume 2, p. 7.

Jones, G. R., 2015. Human Friendly Coordinates.
GeoInformatics, Volume 18, pp. 10-12.

Knuth, D. E., 1998. The Art of Computer Programming:
Volume 3: Sorting and Searching. 2 ed. s.l.:Addison-Wesley
Professional.

Munro, J. I. & Raman, V., 2001. Succinct Representation of
Balanced Parentheses and Static Trees. {SIAM} J. Comput.,
Volume 31, pp. 762-776.

Purss, M., ed., 2017. The OpenGIS Abstract Specification -
Topic 21: Discrete Global Grid Systems Abstract
Specification). s.l.:Open Geospatial Consortium.

AGILE 2019 – Limassol, June 17-20, 2019

Figure 3: Sizes of the AUIDs generated with three different strategies for a number of random sets of CUIDs

