
 
1 Introduction 

The problem of assigning names or identifiers to places on the 
Earth has been addressed with different approaches. 

Geographical names and street addresses are a solution for 
some places, but they are neither systematic nor unique and, 
in many cases, their positions and shapes are only 
approximate. 

Coordinate systems, e.g. geodetic coordinates, can be used 
to identify points on the surface of the Earth with a pair of 
Real numbers. Using Real numbers as identifiers, i.e. finite 
length strings, requires rounding them. Besides this, most 
Real numbers can’t be represented exactly in the standard 
format for floating point Real numbers in computers and are 
automatically approximated (IEEE, 2008), although this can 
be addressed with alternative encodings that can be as precise 
as needed. 

Global grids provide an alternative by partitioning the Earth 
into cells. Discrete Global Grid Systems (DGGSs), multi-
resolution grids with non-overlapping, equal-area, uniquely 
identified cells, provide a solution to identify places on Earth 
by pointing out, for instance, the smallest cell, up to a 
maximum resolution, which includes those places.  

We are often interested in identifying places with complex 
shapes. On a DGGS, this means identifying a set of cells, not 
only one. This paper explores options to give unique 
identifiers to sets of cells, and thus to areas with any shape. 

 
 

2 Related work 

A Discrete Global Grid System (DGGS) is a spatial reference 
system based on a hierarchical multi-resolution grid of cells 

which form equal area tessellations of the surface of the Earth, 
without any overlapping, at every resolution (Purss, 2017). 
Besides this, a DGGS must define methods to address, i.e. 
identify, each cell, assign data to the cells and perform 
algebraic operations on them and their data. In this paper we 
use the term DGGS as defined by this OGC abstract 
specification. 

The OGC specification does not require a given system to 
create the cell addresses as long as they fulfill the 
requirements. In (Amiri, et al., 2015) they describe three 
general strategies: hierarchy-based, space-filling curves and 
axes-based indexing 

With a hierarchy-based index you give an identifier to the 
cells of a given resolution, and then you use those identifiers 
as prefixes for the cells at the next resolution. The rHEALpix 
DGGS uses this (Gibb, 2016). In rHEALPix, N, S, O, P, Q 
and R are the six identifiers for the cells of resolution 0. If you 
subdivide N into 4 cells (nside = 2) at resolution 1, their 
identifiers will be N0, N1, N2 and N3. If you subdivide N0 
into 4 cells at resolution 2, their identifiers will be N00, N01, 
N02 and N03. And so on. 

Space-filling curves are 1D curves that, when created 
recursively, end up covering a 2D space. The identifiers are 
typically constructed with digits from a suitable numeric base 
which depends on the refinement (i.e. on how you subdivide 
the cells). For each additional resolution you add a new digit. 
For example in (Bartholdi & Goldsman, 1999) they define an 
indexing method based on the Sierpinski space-filling curve 
for triangular cells and base 2 digits, with valid cell ids such 
us 0 (1 subdivision), 011 (3 subdivisions) or 00000 (5 
subdivisions). 

In axes-based indexing you define m axes (e.g. m = 2 for a 
2D DGGS) and enumerate the cells along those axes. 
Refinements are solved by adding an additional number for 
the resolution. In the cube-based example in (Amiri, et al., 
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2015, Figure 10), a cell at resolution 1 can have an identifier 
such as [3,(0,0)]1 (third face of the cube, lower-left cell at 
resolution 1), which would be subdivided into 4 cells at 
resolution 2 with identifiers [3,(0,0)]2, [3,(0,1)]2, [3,(1,0)]2 
and [3,(1,1)]2. 

Alphanumeric geocoding systems provide unique, human 
friendly identifiers for locations which are either points or 
cells of the same shape, usually squares or triangles, with a 
limit on the resolution or accuracy. They are often based on 
Discrete Global Grids, but not always. A well-known example 
is what3words (Jones, 2015), which assigns three fixed words 
to each square cell of 3m × 3m on the Earth and is being 
proposed as an alternative addressing system (Howgego, 
2017). It has some extension proposals, such as (Jiang & 
Stefanakis, 2018) which would add variable resolution and 
support for a vertical dimension by using up to five words, 
and even some satiric alternatives, such as what3fucks* which 
uses swear words and triangular cells. There are other 
systems, such as 3geonames†, which encodes points, not cells, 
with an accuracy of up to 1m, and GeoKeys‡ which encode 
1m × 1m squares with 4, 4-letter words. 
 
 
3 Creating unique identifiers for areas on a 

DGGS 

A DGGS must provide a way to address each of its cells with 
a unique identifier (a Cell Unique Identifier, CUID). Any 
area on a DGGS is formed by a set of cells, possibly mixing 
cells of different resolutions. 

There are many possible areas in any DGGS. For instance, 
in a DGGS that has 6 cells at resolution 0, and refines each 
one into 9 at the next resolution level, there will be 6 × 9R 
cells at resolution R, e.g. 486 at R=2. The number of areas 
that can be defined by using only cells of a given resolution is 
equal to the number of non-empty sets of cells that can be 
chosen at that resolution, which is 2(# of cells at resolution)-1. 
Following the example, we have 2486-1 possible areas with 
cells of resolution 2, which is a number with 148 digits. 

In practice, we may not need to define areas with a very 
large number of cells thanks to the hierarchical nature of the 
DGGSs. As an example of this, Figure 1 shows that 11 cells at 
resolution R (upper square) are just 2 cells at resolution R-1 
(lower square) and 3 cells at resolution R. 

The example in Figure 1 also shows that areas on a DGGS 
may be defined with different sets of cells. For instance the 
cell with CUID N1 and the cells with CUIDs N10, N11, N12 
and N13 cover the same area. Let’s define an optimal CUID 
set for an area on a DGGS as the set of the CUIDs of the 
smallest set of cells that cover exactly that area. Given the 
requirements of a DGGS (non-overlapping cells which are a 
tessellation at every resolution, and exactly one way to refine 
cells) it follows that there is exactly one optimal CUID set for 
any area on a given DGGS. 

 
 

                                                                 
* http://www.what3fucks.com/ 
† https://3geonames.org/ 
‡ https://geokey.xyz/ 

Figure 1: The same area with cells of the same resolution, and 
with cells of two different resolutions 

 
 
Once we have an optimal CUID set, for example {N11, 

N12, N2, N3}, we need to encode it as a sequence of symbols 
that can be used as a unique identifier. Let’s call this an Area 
Unique Identifier (AUID).  

For this, we need to order the elements of the set with any 
total order relation, for instance the alphabetical order, and to 
encode that ordered set as a sequence. The simplest option is a 
concatenation of the ordered CUIDs: N11N12N2N3. It may 
be necessary for some DGGSs to use an additional symbol to 
separate the CUIDs so it is possible to parse the resulting 
AUID and extract the original CUIDs. 

As we will need to store these AUIDs and, possibly, to send 
them over the Internet, we prefer them as short as possible. 
The multi-resolution, hierarchical structure of cells in a DGGS 
suggests a tree structure as a natural choice to encode them in 
an efficient way.  

Tries, also known as prefix trees, are ordered trees which 
can be used to store data associated to certain keys (Knuth, 
1998, p. 192). These keys are usually strings of characters, 
and a common use of tries is just storing those strings. The 
structure of a trie allows for a compact representation of a 
number of strings. For example, the sequence <N11, N12, N2, 
N3> can be expressed as a trie as shown in Figure 2. 

 
Figure 2: A trie for the sequence <N11, N12, N2, N3>

 
 
To use a trie as an AUID, we need to linearize it as a 

sequence. The Balanced Parentheses (BP) strategy is simple 
and generates short strings (Munro & Raman, 2001). The BP 
strategy allows to encode the structure of any tree, but we 
need to differentiate trees with the same structure that 
correspond to different CUID sets. We thus need to encode 
the CUIDs along with the parentheses. For instance, the trie in 
Figure 2 can be expressed as a BP string as 
(R(N(1(1($))(2($)))(2($))(3($)))), using R to denote the root 
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node, and $ to denote the special end node (the white one in 
the Figure). 

Including the CUIDs in the BP string provides us with an 
opportunity to make that string shorter. As every branch is 
labeled with one symbol, including R and $, we do not need 
the opening parentheses because their role in the BP string can 
be fulfilled by those symbols. This short BP string for the trie 
in the Figure would be RN11$))2$)))2$))3$)))). 

 
 

3.1 Experimental results 

The BP strings shown in the previous section are not shorter 
than the concatenation of the CUIDs. However the example 
already shows two important characteristics: 

 
1. Parentheses in BP strings are just two symbols, or just 

one if using the short version, repeated many times. 
Any lossless compression algorithm will make a 
significant reduction in their length because of this. 

2. The trie benefits from some repetitions in the original 
CUIDs. For instance there are only two 1s in the BP 
string, but there are three in the concatenation of 
CUIDs. The longer the CUIDS, the more relevant this 
saving will become. 

 
Those two characteristics suggest that with sufficiently large 

CUIDs, the compressed BP strings may be shorter than the 
compressed concatenations§. 

To test this hypothesis, we have run a number of 
simulations, see Figure 3, generating different random sets of 
CUIDs and creating the AUIDs for them as simple 
concatenations (blue lines with squares), tries expressed as BP 
strings (red lines with stars) and tries expressed as BP strings 
without the opening parentheses (green lines with circles). In 
the three cases we have applied the same lossless compression 
algorithm to the resulting AUIDs. 

The code used to run these experiments and to produce the 
Figure 3 is available at https://github.com/IAAA-Lab/dggs-
auids as a Jupyter Notebook** with code in Python 3.6. 

In each plot in Figure 3, the number of CUIDs used to 
generate the AUIDs is in the horizontal axis, and the size of 
the AUIDs, in bytes, is in the vertical axis. Each plot is 
labeled with the range of resolutions where the random 
CUIDs have been produced, if the set is an optimal CUID set 
or not, and the indexing strategy used (axis-based following 
the pattern described in Section 2, or rHEALPix style, i.e. 
prefix-based, with nside = 2 or with nside = 3). For instance, 
“Res [6,9]. Non-optimal set, axis CUIDs”, means CUIDs of 
resolutions 6, 7, 8 and 9, with axis-based indexing and the set 
is not optimal (there may be repeated CUIDs, and it is 
possible that there are more cells than needed). 

For this initial work, we have chosen two different indexing 
strategies, and ranges of resolutions which allow us to 
generate thousands of CUIDs. We have also focused our 
efforts on non-optimal sets, as the optimal ones are far slower 
to generate with the current version of the testing scripts (that 

                                                                 
§ Compression will be in general a good idea as we intend to 

have identifiers which are as short as possible. 
** https://jupyter.org/ 

is the reason why they have been tested with less CUIDs). Of 
course, the three different ways to create the AUIDs have 
always been compared among them under the same 
conditions. 

The results show that the trie as a compressed BP string 
without the opening parentheses, i.e. ‘short BP string’, is 
generally shorter than the concatenation and compression of 
the CUIDs, although the differences are not very large. In the 
best cases, compressed short BP strings are around 25% 
shorter than the compressed concatenations. These differences 
usually tend to grow as the size of the CUID sets increases. 
However this result is not universal, and there are a few cases 
where the compressed concatenations of the CUIDs are 
slightly, around 2%, shorter than the compressed BP strings. 

 
 

3.2 Shortening the AUIDs 

The number of the AUIDs that can be generated is huge for 
any DGGS, so they may need to be very long. Following the 
previous example, to identify 2486-1 possible areas at 
resolution 2, at least 486 bits, some 60 bytes, are required. To 
identify all the areas at resolution 10 (cells of around 100 m 
×100 m in that example) we would need to use identifiers of 
20,920,706,406 bits (6 × 910), some 2.6 Gigabytes. Producing 
short AUIDs, with a fixed maximum length, may be 
necessary for instance to use them safely as part of URLs. 

We can associate short identifiers to AUIDs in any arbitrary 
way, for instance using correlative numbers, but a better 
solution is using a hash function, because this guarantees that 
anyone can generate the same short version for the same 
AUID. With, for example, 256 bit hashes we have 2256 
possible unique identifiers. Although there are many more 
possible AUIDs in any DGGS, 2256 is approximately 1.16 × 
1077, which is still huge. 

It is impossible to recover the CUIDs from the hash of an 
AUID. In order to maintain that correspondence, we need to 
store the AUIDs with their hashes, and to provide a lookup 
mechanism to recover the AUID for any given hash. So even 
if we wanted to use only the hashes, making the original 
AUIDs as short as possible is still a relevant issue to save 
storage space. 

 
 

4 Conclusion 

In this short paper we have started to explore the problem of 
providing identifiers to places on Earth when we need them 
for arbitrary areas defined on a DGGS. 

We have shown that the problem consists of choosing the 
smallest set of cells that covers our area of interest, up to a 
maximum resolution, and producing a sequence of symbols 
that encodes the DGGS identifiers of those cells. 

We have also shown that a shorter, fixed length, version can 
be produced with a hash function. This can be used where 
there are strict limitations on size, as long as we provide a 
lookup mechanism to recover the original CUIDs from a hash. 

There are many proposed DGGSs, with different cell 
shapes, refinement strategies and indexing schemes. Our 
initial experiments have included two different indexing 
schemes, axis-based and prefix-based, and a refinement 
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strategy where each cell at resolution R+1 is fully contained in 
a single cell at resolution R. For those, we have shown that 
encoding the cell identifiers in a trie and then linearizing it as 
a compressed BP string typically produces shorter identifiers 
than the simplest approach, which is a compressed 
concatenation. 

Identifiers such as those explored in this paper are mainly 
intended to facilitate the automatic storage, search and 
retrieval of datasets georeferenced on DGGSs. Nevertheless, 
systematic ways to produce human-friendly names for them 
could be designed. The main issue would be that there are too 
many possible different areas. But for limited resolutions or 
certain subsets, this could be solved. 

As future work, there are several paths to explore: 
 More indexing schemes and refinement 

strategies. 
 Areas based on real features instead of randomly 

generated. 
 New strategies to produce shorter AUIDs. 
 Mechanisms to produce human-friendly strings 

for the AUIDs. 
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Figure 3: Sizes of the AUIDs generated with three different strategies for a number of random sets of CUIDs 

 


