
1 Introduction 

Map generalization is both a crucial and complex process of 

map-making, responsible for producing legible and useful 

maps, by making choices about what map features to display, 

simplify, aggregate or even emphasize for a specific map 

purpose. Due to the importance of map generalization, its 

automation has been an active area of research for several 

decades (Brassel & Weibel 1988, McMaster & Shea 1992, 

Mackaness et al. 2007, Burghardt et al. 2014). However, rather 

little research has been devoted to the generalization of 

thematic maps, and in particular to polygonal maps, with some 

exceptions (e.g., Galanda 2003; Smirnoff et al. 2012; 

Mackaness et al. 2008).  

Cartographic practice and research has repeatedly and early 

highlighted the significance of analysing and modelling the 

spatial relationships between map features to understand their 

meaning and importance for the generalized map (Brassel & 

Weibel 1988, McMaster & Shea 1992). Geological maps are 

among the most complex thematic maps, with various elaborate 

polygonal shapes and structures, thus requiring in-depth 

analysis of these structures prior to their generalization. Yet, 

existing solutions for generalizing geological maps rely on 

rather simple principles that have little capability of local 

adaptation, such as cellular automata (Smirnoff et al. 2012). 

We deal with a problem that is frequently occurring in 

polygonal maps, the generalization of groups of polygons. We 

propose an approach that builds on the analysis of polygon 

groups in order to make locally adaptive generalization 

decisions and employs two generalization operators, 

aggregation and typification. The overall approach is divided 

into three stages — group analysis, generalization of groups, 

and evaluation of results — outlined in the following sections. 

The methodology presented here is not only suitable for 

geological maps but could also be applied to other categorical 

maps such as soil, land use, or land cover maps with little 

additional effort. 

 

2 Group analysis 

2.1 Constraints for group feature generalization 

Maintaining the overall shapes and spatial arrangement of the 

polygon patches, as well as balancing area loss and gain during 

map generalization requires the informed selection of 

generalization operators. Informed decision making, in turn, 

depends on the analysis of cartographic constraints and 

characteristics of the groups. In this work, we focus on two sets 

of cartographic constraints. 

The first set of constraints relates to the legibility of polygons 

at a smaller scale, which are defined and applied in 
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This research is part of a larger research project devoted to developing an integrated methodology for the generalization of 

geological maps. In particular, the polygon groups used in this paper were already identified in a preceding step, and hence this 
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Anonymous, (2019). Two basic legibility constraints, the size 

of polygons and the separation distance between them, trigger 

and control the generalization process at the level of individual 

polygons. If features are too small or too close to be clearly 

legible, they should be enlarged or removed. As such 

generalization operations will change the areas of the different 

polygon classes (rock types in our case), the proper balance of 

area gain and loss must be ensured by generalization operators 

with a more contextual perspective, such as aggregation and 

typification. 

The second set of constraints analyse the shape of polygon 

groups and identify the overall shape characteristics and spatial 

organization, such as linear, collinear, curvilinear, grid-like, or 

unstructured alignments (Zhang et al. 2010; Zhang et al. 2013; 

Wang & Burghardt 2017). As we are employing two 

generalization operators in this work, aggregation and 

typification, we seek to classify polygon groups in light of these 

two operators, separating them based on density and sparseness 

(Regnauld & Revell 2007).  

 

2.2 Legibility constraints 

The legibility constraints ensure that the map will be readable 

by a human map user at the target scale of the generalized map. 

First, the minimum size constraint indicates the minimum area 

of colored polygons such that they can be unequivocally be 

perceived by the human eye, and should not be less than 0.5 

mm2 (Regnauld 2001; Galanda 2003; Sayidov & Weibel 2016).  

The separation threshold defines the minimum distance 

between two features and should not be less than 0.15 mm 

(Regnauld 2001; Galanda 2003; Sayidov & Weibel 2016).  

Maximum density is the number of objects per unit area and 

is the point at which the map becomes locally unreadable due 

to visual clutter and thus may trigger a removal or a 

displacement operator (Mackaness 1994), or in our case an 

aggregation or typification operator.  

 

2.3 Spatial organization 

Apart from the properties of individual features, map-makers 

should also consider collective characteristics of compound 

map features (i.e. polygon groups in our case), which denote 

the spatial and semantic relationships of individual map 

features relating to principles of Gestalt theory (Wertheimer, 

1923, 1938; Steiniger & Weibel 2007). Properties of spatial 

organization include the proximity between features, the 

similarity in size, shape, and orientation, as well as class of the 

polygons participating in a group. Groups should only be 

formed between similar polygons. Spatial organization also 

includes visual continuity that identifies groups of objects 

based on their arrangement and alignments (Regnauld 2001; 

Zhang et al. 2010; Zhang et al. 2013; Wang & Burghardt 2017). 

2.4 Group formation 

The polygon groups used in this paper were identified in the 

preceding part of this research (not reported here in detail), 

which takes two steps: pattern identification and group 

identification. In the first step proximity patterns are identified 

by building a Delaunay triangulation from representative 

polygons and removing global as well as local long edges of 

the network (Deng et al. 2011).  The second step is dedicated 

to identifying polygon groups using similarity measures such 

as the size of the polygons, distance between them, shape, 

orientation, and category of the polygons. 

 

3 Generalization 

The second stage of this research focuses on developing 

generalization algorithms that adequately aggregate and typify 

the polygons that represent the geological features portrayed on 

the map. This stage can build on the rich set of measures and 

data structures made available by the group analysis stage. 

 

3.1 Aggregation 

Aggregation (also referred to as amalgamation; McMaster & 

Shea 1992) involves the fusing together of free-standing 

polygonal features — such as a series of lakes, islands, or in 

our case polygons representing rock types — due to scale 

reduction. In Figure 1, the aggregation resulted in the fusion of 

three polygons and a corresponding area gain. The area of the 

three individuals polygons sums to 1992 m2 (smaller than the 

minimum area limit of 2500m2, which is the minimum area 

limit for the 1:50 000 scale); after aggregation, the area is 3701 

m2, clearly above the minimum area limit. Thus, after 

Figure 1. Aggregation of polygons. Left: Original polygons. Middle: Merged pairwise convex hulls of the polygons. 

Right: Fused, aggregated polygon area. 
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aggregation, the resulting polygon may see some amount of 

shrinkage in size. 

We have implemented the aggregation operator by three 

basic algorithms. The first aggregation algorithm simply relies 

on buffering and merging polygons (Perikleous 2006; 

Mackaness et al. 2008; Lui et al. 2014). The second algorithm 

builds a bounding geometry (convex hull, concave hull, or 

alpha shapes), while the third one is builds a constrained 

triangulation from the polygon outline vertices, followed by 

merging the connecting triangles (Jones et al. 1995; Galanda 

2003; Regnauld 2005; Wang & Doihara 2004; Li et al. 2017). 

Most aggregation algorithms in the literature have been 

developed for building generalization and other algorithms 

exist in building generalization, such as triangulation and 

drawing rectangles around the groups of polygons (Regnauld 

& Revell 2007), graph partitioning (He, 2018), or raster 

building polygon aggregation (Li et al. 2017), but these are not 

relevant for the purposes of this work, where we focus on 

aggregating arbitrarily shaped polygons. 

 

3.2 Typification 

Typification is a generalization operator presents a set of 

objects by a subset of representatives, or placeholders. Hence, 

a collection of objects can be represented by fewer objects in a 

symbolic representation (Figure 2, c and d). An important 

requirement of this generalization operator is that the typical 

spatial structure and arrangement of the original set of map 

features is preserved (McMaster & Shea 1992, Anders & Sester 

2000). Hence the name typification. A number of typification 

algorithms have been proposed in the literature, though almost 

exclusively for the purposes of building generalization (i.e. the 

situation is similar to that of aggregation algorithms). 

Anders & Sester (2000) propose cluster detection and its 

application to typification using graph analysis. The approach 

first finds dense areas and selectively removes some features 

from the polygon cluster and uses the PUSH displacement 

framework (Sester 2000) to rearrange the cluster. The challenge 

here to select which building to remove, which is selected 

arbitrarily in the approach. Although the position of clusters 

slightly varies, still the cluster shape is preserved.  

Regnauld (2001) used three steps to tackle the typification of 

buildings. First, partitioning building sets into groups using 

alignments to roads or proximity to roads; second, ‘global’ 

typification, enlarging, removing or displacing feature in the 

groups; and third, evaluating the groups with regards to initial 

constraints.  

Burghardt & Cecconi (2007) present a two-step approach for 

the typification of buildings. The ‘positioning’ step identifies 

the number and position of the objects based on a Delaunay 

triangulation; the ‘representation’ step calculates size and 

orientation for the replacement buildings.  

Building typification at medium scales was carried out by 

Bildirici & Aslan (2010), using so-called ‘length and angle’ 

methods, however, also enlarging buildings and removing 

some due to space limitations and building overlaps. 

Wang et al. (2017) proposed an improved genetic algorithm 

to automate building selection. The approach succeeds in 

removing intra-feature conflicts, but misses inter-feature 

conflicts among buildings. 

 

3.3 Approach and initial results 

Building on the rich information and triangulated data 

structures of the group analysis stage (Anonymous, 2019), we 

propose an approach that proceeds through polygon groups and 

applies aggregation operations and placeholder replacements, 

resulting in overall typification. 

Figure 3 shows the result of the group analysis process for a 

sample map where 678 groups were identified, ranging from 2 

to 15 polygons per group. The majority of groups comprise 

only two or three polygons, accounting for 445 and 130 groups, 

respectively, or 85 percent of all groups. In these small-group 

cases the polygons are directly subjected to generalization by 

aggregation or placeholder typification.  

Figure 2. Typification of a group of polygons. a. Original polygons. b. Original polygons and an aggregated 

polygon. c. Original polygons and a placeholder polygon. d. Final generalization of a group as a single polygon. 
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For all other cases, the polygon groups are further subdivided 

into meaningful subgroups, based on the criterion of proximity 

of polygons, as polygons should be in close vicinity to each 

other to be considered for the grouping. From the Delaunay 

triangulation of polygon centroids, the global and local long 

edges are removed successively. Figure 4 shows the process of 

network building and edge removal for a group of 15 polygons 

(the largest group initially found in the data set of Figure 3), 

akin to divide-and-conquer algorithms. Figure 4d shows how 

the original group of 15 polygons has been subdivided into 6 

groups that are small and compact enough to be amenable 

generalization. Which operator — aggregation or typification 

— and which algorithm is used depends again on the shape and 

spatial organization properties of each individual small 

subgroup. 

 

4 Evaluation 

The evaluation of the results will be carried out in two stages, 

constraint-based evaluation and visual assessment. The 

constraint-based approach will take place continuously during 

the generalization process. Thus, after each step of 

generalization, the legibility, as well as spatial relationships, are 

assessed accordingly and compared to target values for relevant 

constraints. Visual assessment of results will be performed in a 

qualitative way by experts (cartographers, geologists) to ensure 

that the cartographic essence and geological properties of the 

map are maintained. 

 

5 Summary 

We have presented an approach for the automated 

generalization of groups of polygons, as they frequently appear 

in geological maps (and more generally in polygonal maps). 

The approach consists of three stages: group analysis, 

generalization of groups, and evaluation of results. Information 

gained in the group analysis stage allows informed decision 

making in the next, generalization, stage as to which operator 

to choose — aggregation and typification in our case — and it 

also helps selecting the appropriate generalization algorithm 

among several algorithms available for aggregation and 

typification. 

As at this stage our research is still in progress. Thus, the 

proposed approach and the algorithms used will be further 

reviewed and fine-tuned. In future work, we will process large 

map samples and subject the results to the evaluation stage 

described above. 
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Figure 4. Example of identification of subgroups in a group. a. Original polygons. b. Building a polygon 

network using a Delaunay triangulation of polygon centroids. c. and d. Removing global and local long edges, 

respectively. 

 
 

Figure 3. Number of polygons used in the process of grouping and number of groups formed from 

them: polygon groups (blue) formed; number of polygons used to group (red). 
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