
1 Introduction 

Urban tourism has undergone a huge growth, becoming an 

important activity in most cities, where pressure from tourism 

is particularly intense, though not exclusively, in core areas 

known as tourism districts. Non-locals do intensive use of 

facilities and services, including transportation and 

accommodation, available in those areas. Studying the spatial 

structure of destinations has long been considered an 

important topic on tourism research, with implication on city 

management and planning (Pearce, 2001, 2013; Ashworth and 

Page, 2011). Researchers focus their attention on the analysis 

of tourism consumption and production. For instance, some 

studies monitor visitors’ itineraries to analyse their spatial 

behaviour, while others explore the growth of tourism services 

(e.g., accommodation) to study the changes of functional use 

of some urban areas. 

As denoted by some authors (Pearce, 2001; Ashworth and 

Page, 2011) the study of urban tourism is sometimes limited 

by the lack of suitable data. Traditional data collection 

techniques (e.g. surveys, interviews, counters) are often 

laborious, time-consuming and costly, also deprived of a 

longitudinal temporal facet. On the other hand, official data 

sources do not provide detailed information since there are 

some limitations about the spatial and temporal resolution of 

data (Batista e Silva et al., 2018). However, after entering the 

digital age, the popularity of location-aware devices, the 

intensification of user-online activity (in social media), and 

the rise of peer-to-peer digital platforms (e.g., Airbnb, 

Tripadvisor, etc.) have made it possible to access information 

about visitor’s behaviour and their context. Big data offers a 

potential for innovative statistics (Daas et al., 2015), regarded 

as a self-sufficient source or by complementing official data 

or data collected through well-known classic methods. It is 

innovating the way various agencies, either state owned 

institutions or private companies, yield economic, social and 

demographic statistics. Big data is fostering the engagement 

between qualitative-quantitative approaches and its mutual 

benefits rather than advocate the convenience of one single 

approach (Sui and DeLyser, 2011). 

The big data deluge has been associated with a production 

of papers, while promoting its key role in tourism research (Li 

et al., 2018). Recent attempts (Straumann, Çöltekin and 

Andrienko, 2014; García-Palomares, Gutiérrez and Mínguez, 

2015; Vu et al., 2015, 2017; Li, Zhou and Wang, 2018) 

explored the attractiveness of places, tourist’ areas of 

concentration and intra-destination mobility, by leveraging 

geotagged data from social networks. Accommodation supply 

data from Airbnb led the analysis of critical issues associated 

to tourism impacts in urban destinations (Guttentag, 2015; 

Gutiérrez et al., 2017; Eugenio-Martin, Cazorla-Artiles and 

González-Martel, 2019). Still, the analysis of information 

from TripAdvisor can also give an indication on how tourists 

perceive, experience and use the destination (Batista e Silva et 

al., 2018; van der Zee, Bertocchi and Vanneste, 2018). 

All studies found that non-traditional data either from social 

media and peer-to-peer digital platforms is useful for 

managing and monitoring tourism activities on dynamic 

destinations such as cities. However, more research is needed 

to address (big)data reliability (Li et al., 2018), since there can 

exist spatial and temporal biases. It is important to understand 

the strengths and limitations of data and only few studies have 
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used more controlled data sources (e.g., surveys or official 

statistics) to validate social media data. 

This paper compares visitor counts to Lisbon city identified 

by their digital footprints on social media (i.e., visitors’ 

geotagged photos from Flickr) with hotel occupancy rates 

from the city Tourism Bureau (Observatório de Turismo de 

Lisboa –OTL), as well as the accommodation supply from 

Airbnb listings with local accommodation statistics from the 

National Local Lodging Registry (Registo Nacional de 

Alojamento Local – RNAL). The aim of this paper is to 

identify spatial and temporal (dis)similarities between 

authoritative and online data regarding tourist visitation and 

services. We focus our analysis on several years, using 

visitors’ information between 2012 and 2017, and lodgings 

information from 2015 to 2018. 

 

 

2 Data  

Geotagged photos available online on Flickr within the city 

boundary were retrieved through its Application Programming 

Interface. As in previous works (Girardin et al., 2008; García-

Palomares, Gutiérrez and Mínguez, 2015), metadata related to 

photos’ timestamps (the date when the picture was created) 

yielded the selection of pictures taken by visitors. The number 

of days between the first and last uploaded pictures was 

computed to identify users that do not overpass the average 

length of stay (3 days) within the destination. These pictures 

were considered to belong to visitors, otherwise they were 

considered as belonging to locals. The dataset comprises 

>69,400 photos belonging to more than 6,700 users 

considered as city tourists (Table 1). 

Hotel occupancy rates were retrieved from OTL monthly 

reports (https://www.visitlisboa.com/about-turismo-de-

lisboa/observatório). 

 

Table 1: Yearly counts of Lisbon visitors from Flickr. 

 

Accommodation data refers to some information about 

Airbnb lodgings obtained from Inside Airbnb 

(http://insideairbnb.com/get-the-data.html) and Tom Slee 

websites (http://tomslee.net/category/airbnb-data). Both sites 

let the access to data packages containing public information 

compiled from Airbnb website, including lodging geolocation, 

room and host IDs, room type, number of accommodates 

(acc.), bedrooms, reviews, etc. This data was retrieved by 

above-mentioned contributors, from 2015 to 2018. We use the 

available data packages. In 2015, data from a single day in 

March. In 2016 from 4 days in March, June, September and 

December. In 2017, we use data from 8 days between January 

and July. And, in the last year, from 6 days between April and 

October, excluding June. Data compilation from contributors 

correspond to available lodgings in those days. Since the total 

number of rooms may vary according the daytime of data 

collection, we use all datasets about lodging availability in 

several days to have a more precise number resembling the 

existing accommodation supply. Data from different days was 

merged according to each year. Repeated hosting rooms IDs 

were removed so we count distinct rooms offered during the 

year. In order to compile each room information, we compare 

each room data from different days and select only the max 

number of accommodates and bedrooms available in the 

corresponding listings. Coordinates from repeated rooms were 

compared to verify whether they match, no matching rooms 

were also removed. 

 Data from RNAL refers to local lodgings registered and 

legally operating that provide temporary accommodation 

services. We segment lodgings by year with reference to their 

day of registration. All lodging registered from 2010 up to 

2015 were considered for the first year of analysis, and so on 

for the remaining years (Table 2). 

 

Table 2: Yearly counts of lodgings from Airbnb and RNAL in 

Lisbon. 

 

The number of lodgings were spatially aggregated with 

reference to Lisbon city blocks.  

 

 

3 Methods 

3.1 Correlation analysis 

For each year, we compare the similarity of monthly visitor 

counts from social media (Flickr) with hotel occupancy rates 

from OTL by using the Pearson correlation coefficient, which 

is a commonly used statistical method to measure the linear 

relationship between two datasets. We also present results 

from F-test between time-series data. 

 

 

3.2 Geographically weighted regression (GWR) 

 We use the GWR (Fotheringham, Brunsdon and Charlton, 

2002) to assess the degree of association between the 

aggregated number of lodgings from RNAL and Airbnb. 

GWR enables local variations (over space) in the estimation 

of coefficients of determination. We focus on the analysis of 

the standardised residuals to get an overview of the 

differences concerning the spatial distribution of local 

accommodation supply between both data sources. The 

analysis was performed for each of the 4 years. 

 

 

 

 

 

Year Airbnb 

lodgings 

Sum (Max. 

acc.) 

RNAL 

lodgings 

Sum (# acc.) 

2015 5,653 13,903 3,091 20,305 

2016 15,165 57,185 6,159 36,151 

2017 16,925 64,595 10,211 57,886 

2018 19,260 73,609 16,696 93,005 

Year Visitors’ photos Visitors 

(Flickr) 

Visitors - Monthly 

Mean/Std. Dev. 

2012 9,543 1,232 103/22 

2013 11,434 1,250 104/26 

2014 12,507 1,262 105/25 

2015 14,096 1,178 98/16 

2016 10,745 1,073 89/20 

2017 11,083 793 66/23 

https://www.visitlisboa.com/about-turismo-de-lisboa/observatório
https://www.visitlisboa.com/about-turismo-de-lisboa/observatório
http://insideairbnb.com/get-the-data.html
http://tomslee.net/category/airbnb-data
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4 Results and Discussion 

4.1 Inbound visitors counts 

There is a similar trend between the seasonal pattern of Flickr’ 

users considered as visitors and the rates of hotel occupancy. 

Monthly counts from Flickr show the same peaks in the two 

semesters, following the tourism seasonality evidenced on 

hotel occupancy rates from OTL reports. In the last six years, 

there seems to be a significant positive correlation between 

the two time-series (Table 3). Although, this correlation was 

lower in 2012 and 2015 (when compared to other years), not 

showing a powerful significance at the level of p < 0.01, the 

tests for remaining years correlate strongly and highly 

significant. 

Additionally, results from F-test and its low statistical 

significance values (Table 3), suggest that there is not enough 

evidence to reject the null hypothesis (H0 - ratio of variances 

is equal to 1). Therefore, data distributions on both time-

series, regarding monthly visitors’ presence within the 

destination, show similar variances. 

 

Table 3: Pearson correlation (r), F-test and significance level 

between monthly visitor counts from Flickr and monthly hotel 

occupancy rates, from 2012 to 2017. 

p-values: ≤ 0.05(*); ≤ 0.01(**); ≤ 0.001(***) 

 

 

4.2 Comparison between local accomodation 

datasets 

The coefficient of determination reveals the common part of 

variation between datasets (Table 4). Resulting adjusted R2 

denote a medium-high positive correlation between lodging 

counts from both sources. Still, the multi-year analysis reveals 

that the correlation is higher in the recent years. 

 

Table 4: Adjusted R2 from GWR. 

 

 

 

 

 

 

 

By looking at GWR standardised residuals (Figure 1), it is 

possible to identify areas where there are significant 

differences between observed and expected values, 

represented by higher or lower residuals. In the 4 years, the 

accommodation supply located in the ‘inner-city’ is 

consistently represented in both datasets. There are no strong 

differences in most of the peripheral city blocks. Still, the 

amount of city blocks matching lodging counts in areas with 

intensive tourist activity is not numerous but still relevant. 

Similarities are less marked near tourism cores. There is 

some evidence suggesting that there are more Airbnb lodgings 

than expected (on RNAL), most of them located in the 

proximity of tourism cores (city blocks with negative 

residuals – blue colored). Moreover, there are some city 

blocks within well-known tourist areas where lodging counts 

deviate significantly, like the ones located in Graça and 

Alfama neighborhoods. 

 

 

5 Conclusions 

This study examines the reliability of data from social media 

and peer-to-peer digital platforms regarding its temporal and 

spatial representativeness in comparison to official data and, 

therefore, its value as proxy for monitoring tourism activities 

in cities. 

Our analysis revealed that the number of visitors identified 

by their digital footprints matches relatively well the visitation 

pattern (e.g. tourism seasonality) seen on hotel occupancy 

reports.  

Datasets representing the accommodation supply uncovered 

the spatial concentration of local lodgings, not exclusively in 

the well-known tourist areas. Despite the strong correlation 

observed on the spatial distribution of lodgings, there are 

some dissimilarities between datasets, in terms of volume, 

more pronounced as we move from the periphery to tourism 

cores. Moreover, there is some evidence indicating that the 

current increase of lodgings may not be reflected consistently 

in official statistics, neither in consolidated nor in newer 

tourist areas. 

Using online data available on social media and peer-to-peer 

digital platforms can be an effective way for monitoring 

tourist visitation and services. It provides new perspectives of 

understanding tourist behavior, as well as the processes 

related to city tourism production and consumption. 

Our findings support previous works indicating that online 

data complement existing authoritative data. However, it 

should be taken with caution. As denoted in this paper, there 

is the need to evaluate non-traditional sources against other 

data sources to better know their strengths and limitations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year r F F significance (Level=0.05) 

2012 0.69* 2.43 0.16 

2013 0.81** 3.11 0.07 

2014 0.86*** 2.40 0.16 

2015 0.64* 1.16 0.80 

2016 0.89*** 1.96 0.27 

2017 0.71** 3.61 0.04 

Year Adjusted R2 

2015 0.49 

2016 0.51 

2017 0.63 

2018 0.73 
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