
1 Introduction

There is an implicit mantra from the beginning of the Spatial
Data Infrastructures: spatial data should be distributed as a
collection of data along with an attached metadata record
(Hjelmager et al., 2008; Rajabifard, Kalantari & Binns, 2009).
In the context of data publication and data discovery, this
mantra assumes that collections of data should be treated as
opaque artefacts whose whole description is conveyed in
metadata records. The logical consequence of this assumption
is data discovery involves the development of data catalogues
that only contain metadata records about collections of data.
Nearly 25 years ago, Timpf, Raubal & Kuhn (1996) pointed
that the then emerging metadata standards, now a firm reality,
focus more on what the data producers have to say than on
what the data users need to know. Ten years later, works like
Larson et al. (2006) Li & Yang (2008), and Macário &
Medeiros (2009) revealed that standards-based metadata
catalogues did not focus on what the data users need to
discover spatial data and, therefore, they should be improved
to fulfil this purpose. Recent initiatives such as the OGC-W3C
Spatial Data on the Web Working Group address this issue by
taking advantage of commercial search engines. Succinctly,
they propose to publish a HTML Web-page with search
engine focused metadata for each spatial dataset and each
spatial thing that is described and wait to see if commercial
search engines crawl and index them properly. This could
enable non-expert users to use commercial search engines to
discover spatial data but expert users will still need spatial
catalogues.

How can we improve our spatial catalogue today? We have
several ways. For example, a user looking for a specific
historical gazetteer may use terms such as “gazetteer”
“historical” in its query but also may use multiple pre-existing
names that he or she expects to be found in such gazetteer to
narrow the search. However, these names that can be found in
the gazetteers that fit user needs are noise unless they are

explicitly mentioned in metadata records. An improved
catalogue system could help by providing an information
retrieval process for geospatial catalogue aimed at improving
results (Lacasta et al., 2017).

A related problem is the tradition to abstracting the
description of the spatial extent of a dataset in metadata
records to a simply a bounding box. In some scenarios, the
difference between the bounding box and the area of the data
may cause to return datasets spatially irrelevant to the intent
of the query even when the spatial extent described in the
metadata matches the spatial constraint of the query. A quick
way to reproduce this scenario in any catalogue is to ask a
query with a bounding box within the waters of a gulf (i.e. the
intent of the user is “return sea related datasets”) and count the
number of land related datasets returned as results: roads,
natural reserves, etc. (i.e. the intent “interpreted” by the
catalogue is “return land related features“). These datasets
probably do not contain sea related features, but their
bounding boxes cover parts of waters of the gulf and,
therefore, are “fair” results. An improved catalogue system
could help by identifying in spatial semantics during the load
of metadata records to improve the quality of the responses
(Rentería-Agualimpia et al., 2015).

This work presents a different approach to improve
catalogues. We assume that the whole description cannot be
conveyed by metadata records. Hence, we propose that
catalogue indexes should be built mainly from information
extracted from the raw data collection. The main contribution
of this work is a proof of concept of this approach. The work
is organized as follows. First, we introduce the key idea. Next,
we describe the off-the-shelf search engine that enables its
development. The implementation of the proof of concept is
described and some use cases are discussed. Finally, we
conclude with some remarks about this proposal and its
future.

A next-generation geospatial catalogue: a proof of concept

Sergio Martín Segura
Universidad Zaragoza

Zaragoza, Spain
segura@unizar.es

Francisco J
Lopez-Pellicer

Universidad Zaragoza
Zaragoza, Spain

fjlopez@unizar.es

Juan Valiño García
Universidad Zaragoza

Zaragoza, Spain
juanv@unizar.es

F. Javier
Zarazaga-Soria

Universidad Zaragoza
Zaragoza, Spain
javy@unizar.es

Abstract

This paper presents an idea for the development of a catalogue system for spatial datasets based on indexing both their metadata and their
features. This characteristic is not available in spatial data catalogues in Spatial Data Infrastructures. This catalogue uses features for
improving the relevance of responses because metadata records may not convey all the information that users may need for dataset
discovery. The underlying search engine guarantees that when the query filters using a bounding box, all the returned datasets should
contain features in the queried area and their rank position will depend on the characteristics of the matching features. In a similar way,
when the query contains a text query expression, all the returned datasets should contain features related to such query even if their
metadata records do not mention. The feasibility of this approach is shown with the development of a proof of concept using open source
off-the-shelf technologies like Elasticsearch.
Keywords: search, engine, relevance, rank, elasticsearch.



AGILE 2019 – Limassol, June 17-20, 2019

2 Search and rank strategy

The key idea of our proposal is that, instead of storing just
metadata records in the catalogue indexes, we store any
information that may be relevant to the discovery task. This
information should be extracted from the original metadata
record and each feature of the corresponding dataset. The
straightforward implementation of this approach is to add the
textual information extracted from features to a bag of words
and their geometries to a spatial index. With this setup we
could perform the following query: return the datasets that
contains some features matching the spatial and textual
constraints ordered by a relevance rank based on the matched
features.

3 Search engine

The strategy above requires a search engine that supports
spatial queries and hierarchical queries. Moreover, this new
model requires a huge escalation of the information managed
by the catalogue system, growing from just a few thousands
of datasets to the millions of features that the datasets contain.
Modern off-the-shelf search engines such as Elasticsearch
provides support for this approach. Elasticsearch is an open
source, scalable, field tested, big data-oriented search engine
with spatial and parent-child support. Currently, in version
6.X, it supports Geohash Prefix Tree and Quad Prefix Tree
spatial index types for heterogeneous shape types at indexing
and querying. Companies like GitHub or Cisco are using
Elasticsearch to access petabytes of information in just a few
milliseconds. Such features met our needs, so we decided to
use it as the search engine for the proof of concept.

4 The proof of concept

4.1 Information model

The information model of the proof of concept is a minimal
model with the essential elements (Figure 1):
 Dataset. It represents the whole collection and holds the

metadata extracted from the original metadata record.
 Distribution. A dataset may have different availability

forms. This class represents a format available at an
endpoint.

 Feature. A dataset contains features, i.e. spatial objects.
This class represents indexable textual (values) and
spatial (geometry) information.

4.2 Elasticsearch schema

The catalogue data schema had to be designed carefully due to
Elasticsearch technical constrains without losing the original
model idea. The biggest restriction is that the parent/child
relationship requires the parent and the child objects to be
stored in the same index and document type in Elasticsearch.
The combination of the attributes of the dataset and the
feature classes is the document type named root document. In
Elasticsearch, the join field works as a pointer to the parent
document (join parent) and as a type of document selector
(join type). The values of join for datasets and for the features
are different as shown in the table (Table 1). Root documents
of join type “dataset” encodes data from datasets. Each root
document of join type “feature” encodes data from a single
feature. Its geometry is stored in the field geometry and the
lexical representations of its non-spatial attributes is stored
concatenated in a single field named description. The
distribution class is encoded as a nested distribution document
in root documents of join type “dataset” (Table 2).

Figure 1: Information model.

ValueRepresentation
+lexicalForm: String

Distribution
+title: String[0..1]
+format: String
+uri: String

Feature
+title: String[0..1]
+geometry: Geometry

Dataset
+title: String
+abstract: String[0..1]
+keyword: String[0..n]
+date: Date

key: String
v a l u e s

0..n

1..n
distribution

p a r e n t
0..n

Table 1: Root Schema.
Parameter On Dataset On features

title title title
description abstract values
keyword keyword -

join parent - parent id
join type “dataset” “feature”

date date -
distribution distribution [] -
geometry - geometry

Table 2: Distribution Schema.
Parameter On Dataset

title distribution title
format distribution format

uri distribution URI



AGILE 2019 – Limassol, June 17-20, 2019

4.3 Ingest process

The ingest process (Figure 2) has two main phases: extraction
phase and processing phase. The extraction phase starts with a
query to a CSW service to get dataset metadata records. Next,
for each record fetched, it downloads the original resources
described in the metadata, stores and pass them to the next
process. Depending on the file format (GeoJSON, SHP, etc.),
the corresponding process, reads that resource downloaded
and iterates over all its features transforming them to a
common format supported by the index (GeoJSON) and
inserting them in th index. The ETL process is implemented
in IPython notebooks. To simplify the implementation, we
only process datasets available in ESRI Shapefile format, but
additional formats could be easily added in future versions as
new parallel processes. Each dataset and feature have unique
identifiers derived from their properties so the process can be
scheduled to update the datasets periodically. The Python
libraries used in the ingest process are: OWSLib 0.17.1 to
query CSW services; Fiona 1.8.4 to read and process the
Shapefiles and Elasticsearch-DSL 6.3.1 to insert data into the
index.

4.4 Querying the cataloge

The Query Language of Elasticsearch has an operation
called has_child where you can define query that will be
applied to the children of an element. The other important
operations are match which matches full text queries and
geo_shape which filters by GeoJSON area. In our case, we
can express this query in pseudocode as:

Datasets that {
has_child {
Features that {
match text query
geo_shape area

}
}
match text query

}

This way, the results will be the datasets that better matches
the text query, including the texts in their features, if and only
if they have at least one feature in this area. The web app will
then present them both in a list and over the map, being able
to see the individual features that make up the dataset. The

Figure 2: Ingest process.

Figure 3: Query and download scenario.



AGILE 2019 – Limassol, June 17-20, 2019

ETL process has inserted references to the original source of
the data so the user can download it from there or download
the system’s hosted version that acts as a mirror the original
source fails.

4.5 Web client

On the client side, we need an easy to use search portal with a
results list and a map where display the results. It was
implemented with the React + Redux framework. The reason
to choose React + Redux as the frontend framework was its
ability to code independent user interface components and
easily compose them into a web application. Apart from the
visual style, the most important element is the query that the
client is asking to Elasticsearch. The query component was
easy to build and was a combination of textual query plus a
Leaflet map providing the spatial constraint. The search
response component displays the title of the dataset, its
description, a list of links to its different distributions where
the user can download the dataset or access it if the
distribution is a remote download service and the features in
the map (Figure 3).

4.6 Testing the system

In order to test the capabilities of our solution, we loaded 42
datasets extracted from the Spanish SDI CSW with more than
85,000 features in a low-end computer with two cores and
8GB of RAM. We performed spatial only queries with the
map at different scales to assert that the datasets returned
where spatially relevant. In other words: They had features in
this area. We also tested searches for something that can be
mistaken for a feature different from the intention of the
search. In the image (Figure 4) we can see a query performed
with the text “río” (river in Spanish) over a neighborhood area
in Madrid where there was no watercourse. The results
contain a dataset from an address database because the area
has a street named “Calle del Río”. This example combines
the spatial relevance constraint (no hydrology dataset was
returned as response because there are no watercourses in the
area) and the textual hint based on data (a dataset is
discovered because at least one of its features contains the
term “río” although its metadata record does not). It is worth
to mention that the query latency was under 100ms although
speed was not an objective of the tests.

5 Conclusions

The idea that data discovery in SDIs depends on the
development of catalogues that only contain metadata records
should be reconsidered. This work has presented a proof of
concept that shows the feasibility of a catalogue system built
from information extracted from metadata and features. A
new version is in development with a distributed architecture
and multiple formats support aiming a more effective data
discovery for users in SDI.

Acknowledgements

This work has been partially supported by the Aragon regional
Government (project T59_17R) and the Spanish Government
(projects RTC-2016-4790-2 and TIN2017-88002-R).

References

Hjelmager, J., Moellering, H., Cooper, A., Delgado, T., et al.
(2008) An initial formal model for spatial data infrastructures.
International Journal of Geographical Information Science.
22 (11-12), 1295-1309

Lacasta, J., Lopez-Pellicer, F.J., Espejo-García, B., Nogueras-
Iso, J., et al. (2017) Aggregation-based information retrieval
system for geospatial data catalogs. International Journal of
Geographical Information Science. 31 (8), 1583–1605.

Larson, J., Olmos Siliceo, M.A., Pereira dos Santos, M.,
Klien, E., et al. (2006) Are geospatial catalogues reaching
their goals? In: AGILE Conference on Geographic
Information Science. 1 January 2006 Visegrád, Hungary. p.

Li, W. & Yang, C. (2008) A Semantic Search Engine for
Spatial Web Portals. In: IGARSS 2008 - 2008 IEEE
International Geoscience and Remote Sensing Symposium.
2008 IEEE. pp. II-1278-II–1281.

Macário, C.G.N. & Medeiros, C.B. (2009) The geospatial
semantic web: Are GIS catalogs prepared for this? In:
Proceedings of the Fifth International Conference on Web
Information Systems and Technologies. [2009 SciTePress -
Science and and Technology Publications. pp. 335–340.

Rajabifard, A., Kalantari, M. & Binns, A. (2009) SDI and
Metadata Entry and Updating Tools. In: GSDI 11 World
Conference and the 3rd INSPIRE Conference 2009,
Rotterdam 15-19 June 2009. 2009 pp. 121–135.

Rentería-Agualimpia, W., Lopez-Pellicer, F.J., Lacasta, J.,
Muro-Medrano, P.R., et al. (2015) Identifying geospatial
inconsistency of web services metadata using spatial ranking.
Earth Science Informatics. 8 (2), 427–437.

Timpf, S., Raubal, M. & Kuhn, W. (1996) Experiences with
metadata. In: Proceedings of Symposium on Spatial Data
Handling, SDH’96, Advances in GIS Research II. 1996 pp.
12B31-12B43.

Figure 4: Searching a dataset that contains features about a
“río” (river) within a neighborhood of Madrid.


