
1 Introduction 

Landscape can be regarded as an assemblage of human and 
natural phenomena that is multi-faceted reality (Palka, 1995). 
It can be understood as the totality of its physical attributes (e.g. 
landform, land cover and ecology) and the human interactions 
with these attributes over centuries (e.g. land use and 
perceptions) factors (Appleton, 1994; Scott, 2002; Symons et 
al., 2013) These shape the variability of characteristics and 
make a landscape unique and distinctive. Landscape Character 
Assessment (LCA) was designated to describe, classify and 
identify these characteristics at a range of scales (Symons et al., 
2013) and has been applied in both the UK (Swanwick and 
Land Use Consultants, 2002) and European contexts (Wascher, 
2005). These approaches benefit from recent advances in 
geospatial techniques such as GIS and Remote Sensing and 
could be profitably directed towards adopting a ‘bird’s eye’ 
landscape view’ (with cartographic representations) (Symons 
et al., 2013; Butler and Berglund, 2014). However, it is still 
challenging for such approaches to quantify or model landscape 
aesthetic quality in a large scale given the subjective nature of 
the process and the complexity of people’s perceptions. As a 
result professional views hold, notwithstanding the advent of 
more public involvement in improving local landscapes 
planning process (Scott, 2002). 
 

Recent practice places more emphasis on the incorporation of 
cultural characteristics (i.e. patterns of human activity) such as 

settlement and field patters into the LCA process (Turner, 
2006; Symons et al., 2013) to enable a more clear interpretive 
landscape typology, as guided by the European Landscape 
Convention  (ELC). The formal measures for the wilderness 
quality of landscape, by contrast, have an implicit focus on the 
absence of human impact which may provide a supplementary 
information for the characterisation. With the proliferation of 
citizen science initiatives, the crowdsourced scenic ratings 
from the Scenic-Or-Not website (http://scenic.mysociety.org/) 
describe people’s aesthetic landscape judgments through 
georeferenced ground level photos. It allows the landscape 
aesthetic quality to be evaluated and compared with other 
crowdsourced and traditional data (Jeawak, Jones and 
Schockaert, 2017). Meanwhile, such data also open avenues for 
understanding human interactions with the environment such 
as their health (Seresinhe, Preis and Moat, 2015) and 
conceptualisations of scenicness (Chesnokova, Nowak and 
Purves, 2017). All these call into question whether an 
integrated framework that combines these data as part of the 
characterisation and mapping process can result in a better 
informed decision-making (Warnock and Griffiths, 2015). 

 
In landscape studies, many attempts have been to find the 

correlation of a set of landscape features with measures of 
perceived scenic beauty for conservation and enhancement 
purposes (Dramstad et al., 2006; Han, 2009; Simensen, 
Halvorsen and Erikstad, 2018). However, these studies 
commonly neglect the importance of the surrounding within the 
totality of a landscape, and how it contributes to the aesthetic 
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merits. In this sense, more concerns need to be raised over what 
people could perceive in the visual limited extent at their 
location. 

 
Visibility analysis or viewshed is one of the core functions in 

many GIS tools. It has been used in a wide range of 
applications, such as landscape (Brabyn and Mark, 2011) and 
military (VanHorn and Mosurinjohn, 2010). The scalability of 
visibility analyses can, however, be the bottleneck for all these 
applications that requires a time-consuming computation 
(Wang et al., 2017). A fast and simple computation framework, 
therefore, was devised by (Amanatides and Woo, 1987) to 
efficiently estimate viewshed and could be used in support of 
large scale landscape visualisation and assessment (Washtell, 
Carver and Arrell, 2009) though a recent study found that the 
foreground feature had more influence than those in the 
background on perceived landscape beauty (Stadler, Purves 
and Tomko, 2011). 

 
The aim of this study was set up to evaluate firstly whether 

the landscape features (i.e. thematic land covers and wilderness 
quality components) are related to public perceptions of 
scenincess, and secondly to determine the extent to which the 
spatial framework of visibility analysis and scale impact on this 
relationship. The Discussion section includes areas of future 
work and suggests the need for a more appropriate spatial 
framework and the incorporation of additional data for LCA in 
the long run. 

 
2 Material and Methods 

To reduce the computational load of visibility analysis, a subset 
of Scenic-Or-Not data within the Lake District National Park 
was used as a precursor study (Figure 1). There were 2,305 geo-
located Geograph images in this region and images were 
selected for which at least 3 ratings had been collected up to 
February 2015. 

 
Figure 1 The spatial distribution of median Scenic-Or-Not 

ratings in the Lake District National Park 

The land cover and elevation data adopted in this study were 
the 25m raster and 1km percentage cover with 10 aggregate 
classes of the Land Cover Map 2015 (LCM2015) created by 
the Centre for Ecology & Hydrology (Rowland et al., 2017) 
and a 25m resolution Digital Elevation Model (DEM) 
download from Digimap Ordnance Survey respectively. Some 
data pre-processing was applied for further viewshed 
analysis—the 21 land cover classes of 25m raster were 
reclassified into 7 broad categories (Table 1). To evaluate the 
effect of visibility and scale, the proportion of broader land 
cover features for each 1 𝑘𝑚#  grid cell was used and 
reclassified as the same categories for comparison. 
 

The predictor variables also included the components of 
wilderness quality in accordance with the definition of 
wilderness continuum regarding remoteness and naturalness 
advocated by (Nash, 1982) and developed by (Carver et al., 
2002): biophysical naturalness, apparent naturalness, 
remoteness from access and remoteness from population using 
a multi-criteria evaluation (MCE) framework. The voxel-based 
viewshed tool employed herein was developed by (Carver and 
Washtell, 2012) where the visibility algorithm behind is similar 
to the R2 algorithm described by (Franklin and Ray, 1994). 

 
Table 1 reclassification matrix. 

1km raster 
(10 classes) 

25m raster 
(21 classes) 

Reclassified 
class Label 

broadleaf 
woodland 

broadleaved 
woodland 

broadleaved 
woodland LCM1 

coniferous 
woodland 

coniferous 
woodland 

coniferous 
woodland LCM2 

arable arable and 
horticulture agriculture LCM3 improved 

grassland improved grassland 

semi-natural 
grassland 

neutral grassland 

grassland LCM4 

calcareous 
grassland 
acid grassland 
fen, marsh and 
swamp 

mountain, 
heath, bog 

heather 

moor LCM5 
 

heather grassland 
bog 
inland rock 

saltwater saltwater 
water LCM6 

freshwater freshwater 

coastal 

supra-littoral rock 

coast LCM7 
 

supra-littoral 
sediment 
littoral rock 
littoral sediment 
saltmarsh 

built-up areas 
and gardens 

urban 
settlement LCM8 suburban 
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In this voxel surface model, each pixel of DEM is projected 
as a series of vertical columnar elements whose vertical and 
horizontal surfaces can be independently checked for partial 
visibility together with calculating the distance decay effect. 
Within the visibility surface in the circle of 20 m radius, the 
proportional viewshed of each feature for each pixel was 
calculated and normalised using a logarithmic scale. Then the 
land cover covariates were extracted from the 8 normalised 
feature surfaces derived from the voxel-based viewshed 
analysis. 

 
Then, a global Ordinary Least Squares (OLS) regression was 

applied to model the relationships between predictor and target 
variables. The OLS model can be expressed as follows: 

 
where for observations indexed by 𝑖 = 1,… , 𝑛 , 𝑦+  is the 

target variable, 𝑥+- is the value of the 𝑗/0 predictor variable, 
𝑚 is the number of predictor variables, 𝛽2  is the intercept 
term, 𝛽-  is the regression coefficient for the 𝑗/0  predictor 
variable and 𝜖+ is the random error term. 
 
3 Results 

Overall, both of the results (Table 2 and 3) are fairly loose 
model (R# = 0.264 for percentage raster of 1 km land cover 
and R# = 0.236  for the voxel-based features of 25 m land 
cover). Counter intuitively, the former model fit was not 
improved by the use of finer land cover features with 
considering the visibility counter. However, more predictor 
variables were found statistically significant in the latter 
regression mode where 5 of the 12 explanatory variables—
broadleaved woodland (LCM1), agriculture (LCM4), moor 
(LCM5), coast (LCM7), biophysical naturalness (Rug), 
apparent naturalness (Nat) and remoteness from access (Acc) 
are statistically significant (p-value < 0.05). Among them, the 
coefficient estimates of broadleaved woodland (LCM1), moor 
(LCM5), biophysical naturalness (Rug), apparent naturalness 
(Nat) and remoteness from access (Acc) suggest positive 
relationships with the response variable. Particularly the 
variations in biophysical naturalness (Rug) are most strongly 
associated with changes in public perceptions of scenicness. 

 
While mapping the distribution of the outlier for the voxel-

based model, there is no obvious pattern but some clutter, for 
example, the green circle region (Figure 2) may suggest a 
need of Moran’s I test for spatial autocorrelation and further 
examining local spatial structures by using simultaneous 
autoregressive (SAR) or conditional autoregressive (CAR) 
models (Cliff and Ord, 1981; Anselin, 1988; Haining, 2003). 

 
4 Discussion 

The results showing a more statistically significant model 
estimate while considering the surrounding features by using 
a voxel-based viewshed analysis provide evidence a stronger 
link between the aesthetic pleasure and the visibility-based 
totality of landscape. This may suggest the use of visibility-

based framework is more informative than a simple grid-based 
characterisation while carrying out a landscape assessment. 
The limitation of the OLS model used herein is, however, to 
ignore substantive spatial interaction which could lead to 
biased and inconsistent estimates.   
 
An amount of future work is laid out in order to suggest a more 
appropriate framework for LCA. Firstly, the residual spatial 
autocorrelation ought to be examined by the Moran’s I test. If 
so, the covariate effects on connectivity structures could be 
estimated by using the spatially explicit models (i.e. SAR and 
CAR). Secondly, more spatially explicit indices can be 
included as additional predictor variables, for example, the 
terrain indices (e.g. overall openness) and the ecological 
indices (e.g. biodiversity). Also, different spatial resolution of 
data could be included to evaluate the effect of spatial scale.  

 
Table 2 Results using grid-based land cover covariates 

R# = 0.264; AIC = 8536.017 
 
Table 3 Results using visibility-based land cover covariates 

R# = 0.236; AIC = 8621.694 
 

𝑦+ = 𝛽2 +<𝛽-𝑥+- + 𝜀+

>

-?@

 (1) 

Parameter Estimate Std. Error t value p value 

Intercept  3.809 1.252  3.041 0.002 
LCM1   0.008 1.227  0.006 0.995 
LCM2   0.127 1.238  0.103 0.918 
LCM3  0.135 1.222  0.110 0.912 
LCM4  1.519 1.215  1.251 0.211 
LCM5  1.200 1.232  0.973 0.330 
LCM6  1.863 1.250  1.491 0.136 
LCM7  0.265 1.359  0.195 0.846 
LCM8 -2.055 1.488 -1.381 0.168 
Rug  1.652 0.173  9.568 0.000 
Nat  0.182 0.072  2.511 0.012 
Acc  0.033 0.010  3.285 0.001 
Rem  0.000 0.000 -1.803 0.071 

Parameter Estimate Std. Error t value p value 

Intercept  3.076 0.217 14.194 0.000 
LCM1   0.031 0.009   3.470 0.001 
LCM2   0.004 0.007   0.472 0.637 
LCM3 -0.007 0.010 -0.733 0.464 
LCM4 -0.021 0.010 -2.072 0.038 
LCM5  0.020 0.008  2.607 0.009 
LCM6  0.011 0.010  1.075 0.283 
LCM7 -0.070 0.018 -3.803 0.000 
LCM8 -0.002 0.008 -0.233 0.815 
Rug   1.930 0.170 11.337 0.000 
Nat   0.530 0.060   8.833 0.000 
Acc   0.041 0.010   4.013 0.000 
Rem   0.000 0.000   1.434 0.152 
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Figure 2 The distribution of outliers  
(blue: underestimation; red: overestimation) 
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