
1 Introduction 

Land use research is an important variable for many studies 

involving the Earth surface (Ban et al., 2015). Earth 

observation is a useful tool for mapping land use for various 

applications like urban expansion and urban heat 

phaenomenon (Zhao et al., 2017; Agapiou et al., 2015), 

hydrological applications (Gashaw et al., 2018; Paule-

Mercado et al., 2017), desertification and land degradation 

(Padonou et al., 2017), land use changes (Akinyemi, 2017), 

climate change impacts (López et al., 2017) etc. Earth 

observation programs as the ones of Landsat and Sentinel can 

support these studies by providing freely distributed and 

systematic medium resolution optical data around the world. 

The primary objective of the optical Sentinel-2 satellite 

mission is to generate data products comparable with the US 

Landsat-8 satellite as a result of the close cooperation between 

ESA and National Aeronautics and Space Administration 

(NASA) (ESA, 2018) and therefore to assurance data 

continuity and enhancement of the Landsat missions (Wang et 

al., 2016).  

Indeed, the new Sentinel-2 Multi Spectral Imager 

instrument (MSI) has a set of bands with very similar spectral 

wavelengths to the Landsat-8 Operational Land Imager (OLI) 

(Flood, 2017), but with higher spatial and temporal 

resolutions (Quintano et al., 2018). Consequently, the Relative 

Spectral Response (RSR) filter of the Sentinel-2 MSI and 

Landsat-8OLI sensors have almost equivalent spectral bands. 

This is in correspondence to the earth observation data service 

continuity that Sentinel-2A mission should complements the 

SPOT and Landsat missions. The four bands (blue (490nm), 

green (560nm), red (665nm) and near infra-red (842nm)) at 10 

m resolution of the Sentinel-2, ensure continuity with 

missions such as SPOT-5 or Landsat-8 and address user 

requirements, in particular, for basic land-cover classification. 

The six bands at 20 m resolution (4 narrow bands in the 

vegetation red edge spectral domain (705nm, 740nm, 775nm 

and 865nm) and 2 SWIR large bands (1610nm and 2190nm) 

dedicated to snow/ice/cloud detection, and to vegetation 

moisture stress assessment, satisfy requirements for enhanced 

land-cover classification (Baillarin et al., 2012; eoPortal 

Directory, 2018). In addition, the orbit of Sentinel-2 is fully 

consistent with SPOT and very close to the Landsat local 

time, allowing continuous blending of Sentinel-2 data with 

historical data from legacy missions to build long-term 

temporal series such as the Landsat images. 

Nevertheless, as Mandanici and Bitelli (2016) state in their 

recent report the Relative Spectral Response (RSR) Filters of 

the Landsat-8 and Sentinel-8 are not identical, and therefore 

some differences and variations are expected in the recorded 

radiometric values. In the same study, the authors have 

concluded that it is possible to combine Landsat and Sentinel 

products, however evaluation assessments should be carried 

out prior to any specific application. It is therefore important 

to evaluate whether the results obtained from both sensors can 

provide or not comparable products (such as land use maps).  
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Abstract 

Sentinel-2 land monitoring constellation mission aims to generate products similar with the Landsat-8 images, the world’s longest 

continuously acquired collection of space-based land earth observation data. Though both sensors share similar spectral characteristics, their 

Relative Spectral Response Filters (RSRFs) are not identical. It is consequently important to assess whether and to what extent end-
products, such as land use maps, may vary between these two sensors. For this purpose, the random forest classifier was applied over a 

semi-arid environment in the Eastern Mediterranean (Cyprus). Initially the Sentinel-2 image was sampled to the Landsat-8 spatial 

resolution. Then, two different classification strategies have been followed: the first one using an equal (balance) training sample between 
the 11 land use classes, while the second classification was based on a random training sample. In addition, land use maps were also 

generated based on maximum likelihood, mahalanobis distance and minimum distance pixel-based supervised classification algorithms. The 

overall results were evaluated based on kappa, overall, producer’s and user’s accuracies. Random forest classification has provided the best 
results with a kappa accuracy of 90% for both datasets while maximum likelihood algorithm has provided a kappa coefficient between 

79.06% and 81.27% for Sentinel-2 and Landsat-8 sensors respectively. These results were much more improved compared to the 

mahalanobis and minimum distance classifiers, with an approximately kappa coefficient 69% and 66% respectively. In addition, the results 
obtained from the random forest have demonstrated that only a very small variance between the two datasets (Sentinel-2 and Landsat-8) 

exists (<3 % kappa coefficient), which can be due to the non-identical RSR filters of the sensor.  
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This study aims to examine whether Landsat-8 and Sentinel-

2 sensors can provide comparable land use classification 

results, in semi-arid environments, within the accuracy limit 

of their spectral relative uncertainty (± 3%-5%). For this 

purpose the analysis is carried out using several existing 

supervised pixel-based classification techniques have been 

evaluated. 

 

2 Methodology 

For the aims of the study, one Landsat-8 and one Sentinel-2 

images were used over the same area. The Landsat-8 (path: 

176 / row: 36) and Sentinel-2 (granule: 

L1C_T36SVD_A011601_20170911T083628) images had a 

relatively small time-window difference, minimizing in this 

way any seasonal variations between the two datasets (11th of 

September 2017 and 15th of September 2017 for Landsat and 

Sentinel images respectively).  

Landsat-8 and Sentinel-2 images were downloaded via the 

Earth Explorer platform at level Tier 1 (T1) and 1C 

respectively. Both these levels ensure that radiometric and 

geometric corrections have been applied. Tier 1 (T1) contains 

the highest quality Level-1 Precision Terrain (L1TP) data 

considered suitable for time-series analysis. The geo-

registration is consistent and within prescribed tolerances (i.e. 

<12m root mean square error (RMSE)) (Landsat collections, 

2018). Level-1C for Sentinel data refers to at-top of 

atmosphere reflectance with geometric corrections including 

orthorectification and spatial registration (ESA, 2018). Both 

datasets are set in the cartographic project of the Universal 

Traverse Mercator (UTM) and WGS84 ellipsoid. Then the 

Sentinel’s bands were resampled to 30 meters pixel resolution 

(similar to Landsat-8 image) using a cubic convolution 

resampling method.  

Equivalent bands of Sentinel-2 and Landsat-8 were then 

extracted for further processing from both datasets. These 

spectral bands include the visible part of the spectrum, near 

infra-red and the two short waves infra-red (SWIR) bands.  

After the extraction of the specific bands from both sensors, 

a detail image sampling of training areas was carried out. In 

total more than 1700 samples were digitized, to be used for 

training purposes (70% of the total samples) while the rest of 

the samples (30%) were used to evaluate the classification 

results. The following land use classes were identified as 

shown in Table 1: 

 

Table 1: Land use classes and samples used in the study 

Class Name Samples 

Class 1  Natural Waterbodies (deep) 79 

Class 2 Natural Waterbodies (shallow) 87 

Class 3  Artificial Waterbodies 111 

Class 4  Urban Area and Artificial surfaces 172 

Class 5  Grey Soil 91 

Class 6  High Intensity vegetation 163 

Class 7  Medium Intensity vegetation 219 

Class 8 Low Intensity vegetation 134 

Class 9  Stony Soil 148 

Class 10 Agricultural Soil 210 

Class 11 Bare Soil 288 

 

The random forest classification analysis was carried out in 

the R Project for Statistical Computing environment. 

 

3 Case study area 

The case study is located in the western part of Cyprus island 

covering an area of approximately 35 km length and 20 km 

width (700 km²) between 32o 30΄ 00΄΄ - 33o 00΄ 00΄΄E and 

35o 00΄ 00΄΄ - 35o 20΄ 00΄΄N (WGS 84, Zone 36 North). The 

topography of the island is dominated by two mountain 

ranges, namely the Troodos Mountains in the central part of 

the island the Pentadaktylos Mountains in the northern part. 

Mesaoria central plain, lies between these two mountains and 

it is considered the primary agricultural region of the island.  

Despite its small size, Cyprus has a variety of natural 

vegetation including forests of conifers and broadleaved trees.  

The area of interest is approximately 40-60 kilometres, 

north of Lemesos and Paphos towns and about 50 kilometres 

eastwards Lefkosia, the capital of Cyprus. Several artificial 

areas (small towns and villages) can be found in the area, 

while most of the area is covered by the Paphos and Troodos 

forest and other semi-natural areas. The western part is 

primarily used for agriculture. In addition, another part of the 

area in the south, is part of the EU-wide network of nature 

protection areas, Natura 2000 (highlighted with green colour 

in Figure 1 top). 

 

Figure 1: Detail of the case study area (top), located in the 

western part of Cyprus (bottom left).  

 

 
 

4 Results 

Based on the training areas for all 11 land use classes the 

random forest classification was applied in the images in the 

R environment. The balanced and imbalanced random forest 

classification results for Sentinel-2 and Landsat-8 are 

presented in Figures 2 and 3 respectively. The land use maps 

were able to map the Troodos and Paphos forests in the 

western part of the area as well as the agricultural fields in the 

eastern part. Urban and other artificial areas have been also 

spotted in the central and eastern part of the case study. Grey 

colour soil is noticeable in the northern part of the area near 

Morfou. This class is linked with the systematic depositing of 

the rivers.  

Overall, both images have provided very similar results: 

89.11% and 92.03% of kappa coefficient (for Sentinel-2 and 
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Landsat-8 respectively), which is within the spectral 

uncertainty range of the sensors using a balanced training 

dataset (scenario 1). Similarly, kappa coefficient was 

estimated to 87.26% and 90.65% based on a random subset of 

the training dataset (scenario 2). Concerning kappa, a value of 

0 corresponds to a total random classification, while a kappa 

value of 1 represents a perfect agreement between the 

classification and reference data (Van Vliet, 2009; Yang et al., 

2011). The overall accuracy for scenario 1 was found 90.27% 

for Sentinel-2 while for Landsat-8 was estimated to 92.88%. 

For the second scenario, these accuracies were calculated to 

88.35% and 90.65% respectively (see Table 1).  

Most of the land use classes have also demonstrated high 

accuracies (> 74%) while only a limited number of classes 

such as Class 4 (Urban Area and artificial surfaces), Class 5 

(Grey soil) and Class 8 (Low Intensity vegetation) have 

shown reduced producer's accuracies. Water bodies (Classes 1 

-3: Natural Waterbodies (deep); Natural Waterbodies 

(Shallow); Artificial Water bodies) have been successfully 

classified with extremely high accuracies. User’s accuracies 

for balanced training sample strategy, has also provided very 

high accuracies, since most of the classes have been mapped 

with more than 85% correctness. 

 

Figure 2: Random forest classification results following a 

balanced training sampling for Sentinel-2A (top) and Landsat-

8 (middle) images. Differences between Sentinel-2A and 

Landsat 8 are highlighted with red (bottom) 

 

 
 

Comparable results have been obtained between balanced 

and imbalanced training areas for each sensor -individually- 

based on both producer’s and user’s accuracies. Though, some 

variances exist for Class 4 (Urban Area and artificial 

surfaces). The specific class has been already mentioned by 

Alexakis et al., (2012) as a problematic to be classified (for 

the area of Cyprus) due to its high correlation of the spectral 

profile with other soil classes. This strongly affects the 

performance and the accuracy of the satellite classification. 

Indeed, the specific class (Urban Area and artificial surfaces) 

has the lowest ranking -with Class 8 (Low Intensity 

vegetation) in terms of accuracy between all classes for the 

random forest classifier.  

 

Figure 3: Random forest classification results following an 

imbalanced training sampling for Sentinel-2A (top) and 

Landsat-8 (middle) images. Differences between Sentinel-2A 

and Landsat 8 are highlighted with red (bottom) 

 

 

In addition, some significant statistical differences exist 

between the two sensors for Class 4 (Urban Area and artificial 

surfaces): producer’s accuracy for Class 4 was around 67% 

for Sentinel-2 while for Landsat-8 the accuracy was 86%. 

However, user’s accuracy was high for both images providing 

a high degree of reliability of the product (i.e. land use map). 

To evaluate the potentials of the random forest classifier 

with other known classifiers, we have compared the results 

with the maximum likelihood, mahalanobis distance and 

minimum distance classification products. As mentioned 

earlier in Section 2 (methodology), the training areas of these 

classifications have remained the same as the one used before 

in the random forest. The spectral similarity of the Urban Area 

and artificial surfaces class (Class 4) with the soil class (Class 

11) has resulted an over-estimation of the specific class. 
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Significant differences exist between the various 

classifications. For example, the producer’s accuracy for Class 

4 (Urban Area and artificial surfaces) is less than 32% for 

Sentinel-2 image after the mahalanobis and minimum distance 

classification while the score for the maximum likelihood in 

70%. Similar difference is found for other classes such Class 5 

(Grey soil) and Class 9 (Stony soil), while for Landsat-8 the 

accuracy varied from 58% up to 76% for all classifications 

results. Classes such as grey soil (Class 5), high intensity 

vegetation (Class 6), medium intensity vegetation (Class 7) 

and low intensity vegetation (Class 8) have provided low 

producer’s and user’s accuracies.  

Overall the maximum likelihood classification has 

generated the highest kappa coefficients (79.06% and 81.27% 

for Sentinel-2 and Landsat-8 respectively) followed by the 

mahalanobis distance (69.30% and 69.20%) and the minimum 

distance classifications (66% and 67%). These results are 

lower than the random classifier (either using a balanced or 

imbalanced training areas). The overall accuracy of the three 

classifications range from 69.00% (minimum distance for 

Sentinel-2) to 83% (maximum likelihood for Landsat-8). 

5 Discussion 

The overall statistics of the random forest classification, 

confirm that both Landsat-8 and Sentinel-2 sensors can 

provide similar classification results (with a range less than 

3% for kappa coefficient) in semi-arid environments such as 

the one of Cyprus. Especially, using a balanced training 

sample strategy the user’s and producer’ accuracies are almost 

identical for most of the classes, providing a unique tool for 

the systematic land use mapping in the future.  

Figure 4 presents the spectral differences observed between 

the Sentinel-2 and Landsat-8 sensors for the 11 land use 

classes used in this study. As it is shown, the small spectral 

differences between the two sensors do not affect significantly 

the land use classification for most of the classes (9 out of the 

11 total classes used here). However, two specific classes 

(grey soil and low intensity vegetation) seem to exceed the 

absolute radiometric uncertainty of the sensors (5%), 

confirming the general conclusions made by Mandanici and 

Bitelli (2016), that for specific applications (as those of the 

classification in semi-arid environments) should be firstly 

evaluated, before any combination of Landsat and Sentinel 

products. Indeed, these two classes have given different 

producer’s and user’s accuracies. The producer’s accuracy 

was estimated to 74.00% and 87.50% for grey soil and 

65.51% and 73.91% for low intensity vegetation (for Sentinel-

2 and Landsat-8 respectively), while the user’s accuracy was 

found 81.70% and 92.10% for grey soil and 73.90% and 

82.50% for low intensity vegetation. 

Table 2: Random forest classification accuracies for Sentinel-2 and Landsat-8 images using balanced and imbalanced 

training sampling among the classes 

 

Random Forest classification 

results 

Sentinel-2 Landsat-8 

Random Forest 

(Balanced) 

Random Forest 

(Imbalanced) 

Random Forest 

(Balanced) 

Random Forest 

(Imbalanced) 

Kappa statistics 89.11% 87.26% 92.03% 89.69% 

Overall Acc. 90.27% 88.35% 92.88% 90.65% 

 

Natural Waterbodies (deep) 

P
ro

d
u

ce
r'

s 
A

cc
. 

100.00% 100.00% 100.00% 100.00% 

Natural Waterbodies (Shallow) 100.00% 100.00% 100.00% 100.00% 

Artificial Water bodies 100.00% 100.00% 96.67% 96.67% 

Urban Area & artificial 

surfaces 
65.96% 68.09% 86.79% 84.91% 

Grey soil 74.00% 92.59% 87.50% 87.50% 

High Intensity vegetation 93.88% 95.92% 98.00% 96.00% 

Medium Intensity vegetation 94.12% 86.76% 96.88% 89.01% 

Low Intensity vegetation 65.51% 79.31% 73.91% 71.74% 

Stony soil 92.31% 80.77% 100.00% 100.00% 

Agricultural soil 89.51% 95.52% 98.41% 98.40% 

Bare soil 81.61% 72.41% 88.51% 82.76% 

 

Natural Waterbodies (deep) 

U
se

r'
s 

A
cc

. 

97.70% 98.30% 98.70% 99.80% 

Natural Waterbodies (Shallow) 99.50% 99.00% 97.80% 98.40% 

Artificial Waterbodies 99.70% 99.80% 100.00% 99.60% 

Urban Area & artificial 

surfaces 
84.40% 86.60% 90.10% 83.20% 

Grey soil 81.70% 78.20% 92.10% 76.20% 

High Intensity vegetation 95.90% 94.10% 97.10% 95.50% 

Medium Intensity vegetation 89.50% 87.90% 88.80% 89.30% 

Low Intensity vegetation 73.90% 74.60% 82.50% 76.40% 

Stony soil 96.40% 95.60% 96.10% 92.30% 

Agricultural soil 95.60% 96.50% 95.50% 94.80% 

Bare soil 85.80% 76.50% 89.20% 87.80% 
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Figure 4: Spectral differences between Sentinel-2 and 

Landsat-8 sensors for the various land use classes examined in 

the study.  

 
 

6 Conclusions 

Land use maps are essential tools for various applications. 

The freely distributed Landsat and Sentinel data can provide 

systematic cloud-free optical data around the globe. This new 

generation of space-borne sensors is generating nearly 

continuous streams of massive remote sensing imageries 

sending several Terabytes of information every day to the 

satellite data centres (Ma et al., 2015)].  

Though that Sentinel mission aims to provide “identical” 

spectral data as the one provided by the Landsat series, their 

RSR filters are not identical. Therefore, it was important to 

examine whether this small spectral mismatch is affecting 

classification results and land use maps. Eastern 

Mediterranean basin -a region characterized by the high 

frequency of cloud-free images- was selected as a case study. 

For this purpose, two images over Cyprus with only 4 days 

difference have been acquired and processed. Training areas 

have been used in both datasets and then the classification 

analysis was carried out using the random forest classifier, 

maximum likelihood, mahalanobis distance and minimum 

distance. At the end of this analysis, the classification 

accuracy has been reported. 

The results have shown that both Sentinel-2 and Landsat-8 

can provide almost identical land use maps especially when 

sophisticated classifiers as the one of random forest is applied. 

The results were in general agreement between most of the 

land use classes used in this supervised classification process. 

The difference for the kappa coefficient was limited to less 

than 3%. However, for specific land use classes a variance 

was observed between the two sensors indicating that further 

experiments should be made prior to the use of combined 

Sentinel-2 and Landsat-8 products. Overall, the Sentinel-2 

sensor has provided slightly better results compared to the 

Landsat-8. 

Both Landsat and Sentinel optical data can be used as an 

integrated tool towards the systematic monitoring and 

mapping of semi-arid environments, providing medium 

resolution land use maps, taking into considerations the 

specific problems raised for each case study. The new revised 

CORINE land use land cover products covering the period 

2012-2018, which is still under evaluations, can be also used 

so as to evaluate further these (and similar) results and 

therefore to evaluate whether the optical Sentinel 2A and 2B 

sensors can be integrated as a systematic tool by the 

Department of Environment of Cyprus for delivering 

CORINE maps. In the near future, it is expected that the 

authors would experiment towards the harmonization of the 

two datasets taking into consideration the different spatial 

resolution of the satellites. 
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