
1 Introduction 

In the past few decades, extreme weather events have been 

increasing world-wide. It has been estimated that global floods 

and extreme rainfall events have surged by more than fifty 

percent in this decade alone (Vitousek et al., 2017). According 

to the UK National Oceanographic Center, flooding could cost 

14 trillion USD worldwide by 2100. Given the damage to lives 

and livelihood, demand for high resolution, reliable flood risk 

assessment at community level has been increasing. In recent 

years, the use of Unmanned Aircraft Systems (UAS) are 

growing in popularity and there is a notable rise in case studies 

for flood modelling (Giordan et al., 2018; Restas, 2018). A 

recent common practice is to intersect a horizontal plane with a 

Digital Elevation Model (DEM) in a 3D environment and raise 

the plane’s Z axis until it is visible in the lower elevations, 

highlighting those areas where water will most likely build up 

displaying flood potential. However, there may be other 

variables such as surface texture and slope that should be 

considered that will impact the flow of water during a flood 

event and their use may increase the accuracy of the 

hydrological model. For instance, a steeper slope with heavy 

vegetation will have a much different impact on the flow of 

water as compared to a level area consisting of concrete. 

Methods and tools within ArcGIS were explored in order to 

reveal if there are current ways to accurately create a flood risk 

map using multiple variables derived from high resolution UAS 

data. 

 

 

2 Study Area 

The study area is the town of Appalachia which is located on 

the western side of the Commonwealth of Virginia, USA. This 

town is flooded annually making it a suitable location for flood 

risk mapping. Recent notable floods have occurred in October 

2018, February 2018, June 2017, August 2016, and February 

2015. Numerous buildings are impacted by these floods 

according to the FEMA flood risk data. According to the 

Virginia Department of Emergency Management the average 

annualized flood loss is $391,061 for Wise County and 

$44.104,298 for the whole state (Anon, 2012). A study area this 

size, approximately 5 sq. km, is hard to be inspected using 

traditional, freely available remote sensing data from satellites. 

With the best publicly available DEM at a spatial resolution of 

30m, the hydrological environment of this downtown area 

cannot be properly analyzed. 

 

Figure1: Location of the county in USA (left), study area (right) 
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Abstract 

Globally, floods are the most expensive and frequently occurring natural hazard. Geospatial technologies such as remote sensing play a crucial 
role in better understanding the hazard as well as in estimating the associated risk. Several detailed, in-depth research has been conducted in flood 

related analysis, especially in flood zone delineation and in flood risk assessment.  The crucial part of any flood related research is in identifying 

flow direction and flow accumulation and Digital Elevation Models or DEMs form the core of the data needed. The objective of this study is to 
better understand the least resistant path and in determining flood zones using very high resolution remotely sensed elevation data. The increased 

availability of Unmanned Aircraft Systems (UAS) and the ease of data processing have resulted in the possibility of readily available solutions for 

flood risk assessment. Combining factors such as slope, land use and the ortho-mosaic raster, a very high-resolution flood risk assessment was 

conducted. The results of this project were compared with the Federal Emergency Management Agency (FEMA) flood map data for accuracy and 

compared to manually digitized water drain locations to assess flood mitigation efforts and approach disaster risk reduction. 
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3 Methodology 

An overview of the methodology that was used and that will 

be discussed in this study can be found in Figure 2. The data 

acquisition was done mostly through operation of UAS and 

additional data was obtained from the local GIS department. 

Then the UAS data had to be processed using photogrammetry 

software. The Digital Terrain Model (DTM) derived from the 

UAS data is initially used to show flood extents using only 

elevation and is compared to FEMA flood risk data to assess 

the accuracy. Additional data, such as slope and terrain, was 

then derived to increase the number of variables considered in 

the flood risk mapping. These variable dynamics on the 

hydrological environment were analyzed using multi-criteria 

evaluation to depict the likeliness of an area to flood. These 

variables were then used in a least cost-path calculation to 

analyze the most likely paths of water from the river to the 

borders of the flood extent. These least resistant areas for water 

flow were then compared with water drain locations to create 

the final results and assess flood mitigation possibilities. 

 

Figure 2: Flow chart of methodology used in this study  

 
 

3.1 Data Acquisition 

The data acquisition took place on December of 2017. This is 

the best time to acquire data using UAS for DTMs especially 

for those involving rivers. During winter there is less foliage 

covering the terrain so that it can be more accurately captured 

and calculated. The UAS was flown at 122m in altitude 

covering approximately 1.14 Sq. Km. and taking a total of 4 

hours to complete with 4 separate flights. Overlapping images 

were used to process an orthomosaic and other derived 

products. A total of 686 photos were taken. A forward overlap 

of 70% and side overlap of 65% was used among the images 

and was calculated based on the onboard GPS of the UAS.  

 

Figure 3: Overhead view of the UAS image captures  

 
 

Additional data was gathered from the Wise County GIS 

Department. The data shared was the Federal Emergency 

Management Agency (FEMA) flood risk areas shapefile for the 

county and is used in comparison with the flood mapping done 

in this study. FEMA flood risk maps are created and maintained 

using data through Flood Insurance Rate maps (FIRMs) and 

risk assessment FIRMs include statistical information such as 

data for river flow, storm tides, hydrologic analyses, and 

rainfall and topographical surveys.  In addition, infrastructure 

vector files were shared such as roads, railroads and building 

footprints to use throughout the study to make them more 

pronounced in certain data structures.  

 

3.2 Preprocessing 

Pix4D was used to pre-process and prepare the drone imagery 

before use in ArcGIS. This software uses photogrammetry and 

computer vision algorithms to transform RGB images into 3D 

maps and models. Photogrammetry is the science of making 

measurements in photographs and to derive products such as 

DTMs. It uses the overlapping images to calculate the 

parallaxes or movements of objects in relation to the sensor 

position using the assistance of texture topology. The Ground 

Sampling Distance (GSD) or resolution calculated by the 

software for the 2D orthomosaic image was 2.72cm. Because 

of the smoothing nature of the DTM generation algorithm, 

Pix4D’s default resolution for DTM is 5x greater than that of 

the project making the DTM’s GSD 13.6cm. Ground Control 

Points (GCP) were used in the project from known locations 

and coordinates on the map and the final accuracies were an 

absolute geolocation variance RMS Error (ft) X = 8.023, Y= 

17.21, Z= 11.32 and a mean geolocation accuracy (ft) of X = 5, 

Y = 5, Z = 10. 

The DTM, which was produced by Pix4D, is an elevation 

model of the terrain that removes surface structures such as 

buildings and trees. This data structure was then imported into 

ArcGIS where the rest of the processing took place. 

 

3.3 DTM SIM 

The initial step in this project was to create a flood simulation 

of just the DTM elevation data that intersects with an increasing 

plane (Z axis) representing water. This was done to assess how 

these current methods match up with the FEMA flood maps and 

then how this study can then improve on these methods. This 

type of model helps identify those areas that will most likely 

flood first because of the lower elevations. The places that are 

most likely to flood in the study area around the river crest can 

clearly be seen in Figure 4 as the water level increases. 

 

Figure 4: From left to right, captures of the flood simulation 

 
 

This simulation was created using the 3D ArcScene 

environment. The water level was increased until there was 

lack of expansion in the flood area to which this was considered 

the peak extent of the flood. The study area can be seen from 

an aerial view in Figure 5 showing how this flood extent 

compares with the FEMA flood map. The simulation does a 

fairly good job of matching the FEMA data except for some 

areas in the east of the study area. 
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Figure 5: Flood extent at peak (left), FEMA flood zone (right)  

 
 

 

3.4 Deriving Additional Products 

The concept of this project was to introduce additional 

variables to consider the likeliness of flooding when analyzing 

the flow and accumulation of water. The appropriate additional 

variables to include, common in hydrological projects, are 

slope and surface texture. Depending on the degree of slope of 

the surrounding area and differences between smooth (non-

absorbent) textures such as asphalt and rough (absorbent) 

textures such as vegetation can impact the behaviour of water 

flow. These additional products were derived in ArcGIS using 

the RGB orthomosaic and DTM produced by Pix4D. The slope 

was calculated using the geoprocessing tool in ArcGIS. The 

surface textures were created using supervised classification 

techniques. Two different algorithms were tested, Random 

Forest (RF) and maximum likelihood. The RF algorithm was 

implemented using a R script in RStudio and is a powerful 

machine learning technique that uses a large number of 

decision trees created from random sampled selections. The 

maximum likelihood classifier algorithm that was used was the 

default one found in ArcGIS and is considered more of a 

statistical method based on probability of distribution models. 

As can be seen in Figure 6, the maximum likelihood method 

produced more generalized and consistent textures that would 

be easier to interpret further in the analysis. The generalization 

did not appear to sacrifice much on accuracy and was the 

method chosen. Five classes were created from this 

classification to create a map representing asphalt, gravel, dirt, 

grass and brush throughout the study area.  

 

Figure 6: RF classification (left), true color RGB (middle), 

maximum likelihood classification (right) 

 

    
 

3.5 Multi-Criteria Evaluation and Selection 

As the different datasets contained separate types of 

measurements and ranges, data transformation was done on the 

data values to rank them on the same scale. Rescale by Function 

and Reclassify was used to transform the DTM, slope and 

landcover surfaces to assign high and low water flow 

preferences to locations. Each data set was reclassified into 5 

classes. For example, class 1 represented ranges of less 

resistance to water flow and class 5 represented ranges of high 

resistance to water flow. These parameters were obtained from 

a combination of typical water runoff values such as those 

slopes under 20 degrees having the largest amounts of change 

in impact and terrain analysis concerning water area increase in 

height increments after river crest is surpassed. The classes for 

each data set was structured as follows:  

• DTM elevations (ft)_ - Class 1: 1335.16 – 1350, 

Class 2: 1350 – 1384, Class3: 1384 – 1400, Class 4: 

1400 – 1405, Class 5: 1405 – 1556.16 

• Slope (degrees) – Class 1: 0.0 - 0.5, Class 2: 0.5 – 

5.0, Class3: 5.0 – 10.0, Class 4: 10.0 – 20.0 Class 5: 

20.0 – 88.4 

• Surfaces - Class 1: Asphalt, Class 2: Dirt, Class3: 

Gravel, Class 4: Grass, Class 5: Brush 

As the data was now transformed under the same scale, the 

next step was to combine the layers. Using geoprocessing tools 

or raster functions, the transformed layers were combined onto 

a surface that would show the least resistance to the flow of 

water. When combining layers in a weighted suitability model, 

weights were applied to each layer based on their relative 

importance. The following weights were applied out of a 100: 

50 for elevation, 40 for slope, and 10 for surface. The resulting 

surface, Figure 7, can be used to locate areas based on their 

likeness to flood from the combined attributes discussed. This 

result was compared with the FEMA flood map to investigate 

the accuracy, which can be referenced from figure 5. The 

similarity is high, but it is also dissimilar in certain sections of 

the study area. This is because FEMA is a national level flood 

estimate whereas this is a local level estimate. Since there is a 

conflict in scale and methodology some dissimilarities are 

bound to rise.  

 

Figure 7: Flood risk map using multi-criteria evaluation 

 
 

3.6 Least Cost Path Analysis (LCPA) 

It should be noted that more research is needed regarding this 

type of study with water flow and flood analysis. Most Least 

Cost Path Analysis (LCPA) studies focus with the analysis of 

transport operations for various problems. LCPA was tested on 

downtown Appalachia using the spatial analyst function in 

ArcGIS. For finding the best “cheapest” route for the flood 
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water to take, the least-cost path based on the spatial analysis 

functions of ArcGIS were utilized. Here, there were three 

important datasets that were required. They are the source, cost 

weighted distance and destination. Source is the origin of the 

water, which in this case is the river. The cost weighted distance 

is the cost distance raster produced by the spatial analyst 

functions which use the resulting surface from the multi-criteria 

evaluation discussed in the earlier section. It produces the cost 

raster and a backlink raster or direction raster that helps in 

calculating the least cost path for the flood water. The direction 

raster provides the route to take from any cell, along with the 

cheapest path, to the nearest source. The cost datasets or cost 

raster determines the cost of travelling through each cell. 

Although the cost raster is a single dataset, it is often used to 

represent several criteria. The destination was the outer border 

of what was evaluated as the probable extent of a severe flood 

in this location. The output is an output raster where each cell 

is assigned a value that is the least accumulative cost of 

travelling from each cell back to the source for instance the 

lower the value, the lower the cost. The routes produced will be 

in areas that we may want to inspect for the reasoning of these 

results, possible flood sources, and flood water paths. 

 

Figure 8: LCPA of water flow in the center of the study area 

 
 

 

4 Results 

In order to assess what flood mitigation efforts are already in 

place and those that might need to be added, the water drains 

were digitized within the study area. Those drains that are 

located on the side of the roads underneath sidewalks have been 

labelled as side drains and those drains found in parking lots 

and roads that are upward facing have been labelled as normal 

drains as can be seen in Figure 9. These two types of drains 

have been differentiated in order to understand the 

infrastructure layout.  

 

 

 

 

 

 

 

 

Figure 9: Digitization of the water drains in the study area   

 
 

With a closer look from figure 10, the right image shows how 

the drains can be easily labelled from the high-resolution 

imagery captured with the UAS. With the map overlaid with 

the LCPA data, as seen in the left image, it can be seen how the 

placement of water drains can be analyzed. The road in the 

middle of the image appears to have conditions suitable for 

increased water flow from flooding and which is why there may 

already be a high density of drains existing along that road. 

However, it seems there may be other areas from the river crest 

to the flood extent that need to be examined for possible 

placement of water drains or barriers.  

 

Figure 10: Zoomed center view of the drains and LCPA (left) 

and a closer view of the drains and waterflow (right), 

demonstrating the data resolution from the UAS 

 
 

5 Conclusion 

This study clearly shows the advantage of using UAS for 

conducting very high-resolution flood risk assessment. 

Although coverage area is limited with UAS, the added value 

of community level flood mapping is high. This study also 

provides evidence that there are tools that can be used within a 

GIS software such as ArcGIS that supports flood risk mapping 

with UAS data. This study is an early adaption of these 

methodologies used for this purpose and improvements in 

parameters should be expected. 
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