
1 Background 

Spatio-temporal data analysis is a complex problem. Many 

methods tend to aggregate data over space or time and focus 

on variation over either time or space, respectively (Corcoran 

et al., 2014, Fuller et al., 2012, Gebhart and Noland, 2014, 

Saberi et al., 2018). 

Several statistical methods used in psychology and 

epidemiology can capture complex temporal patterns at an 

observation-unit, and whole-dataset, level. These include 

latent growth curve models (LGCM), multilevel models 

(MLMs) and functional data analysis (FDA). Each functions 

differently: MLMs fit an ‘average’ pattern and allow 

individuals to differ randomly from this (Goldstein, 2011); 

LGCMs function similarly to MLMs but can fit complex non-

parametric curves by ‘distorting’ the time axis (Bollen and 

Curran, 2005); FDA uses a linear combination of spline 

functions to represent each curve individually, with no 

‘average’ curve (Ramsay and Silverman, 1997).  

These methods can be used to extract features of temporal 

patterns at the observation-unit level, for example, minima 

and maxima. Information about these features could be 

incorporated into network analysis as edge and node 

properties or modelled with information from network 

analysis to examine spatio-temporal variation in origin-

destination data.  

This study aims to: investigate the ability of LGCM, MLM 

and FDA to recover pattern features from longitudinal data; 

and apply these methods to investigate the effect of London 

Underground strikes in London on the timing of morning peak 

bicycle demand (MPBD), and how this relationship changes 

according to spatial and network properties of routes. 

2 Application Area 

This study focuses on origin-destination data from the London 

bicycle sharing scheme (LBSS) and its response to London 

Underground strikes. The LBSS uses a network of docking 

stations, from which bicycles are removed and replaced by 

users at the beginning and end of trips, with each trip 

recorded. Bicycles are frequently redistributed to limit the 

number of full or empty stations. External events, weather 

changes, and public transport strikes may affect demand for 

bicycles and redistribution (Corcoran et al., 2014, Fuller et al., 

2012). 

Previous studies examining the effect of such events have 

either focused on temporal variation, aggregating trip 

information over the whole bike network (Fuller et al., 2012, 

Gebhart and Noland, 2014); or spatial variation, aggregating 

data over whole days (Saberi et al., 2018) or several hours 

(Corcoran et al., 2014). Incorporating temporal variation on a 

finer timescale with spatial variation may better identify 

where and when to plan changes in bicycle redistribution in 

response to strike events. 

 

 

3 Methods 

3.1 Simulations 

A preliminary simulation of 100 datasets containing 

longitudinal data (12 randomly timed measurements over 24 

hours) for 100 observation-units was completed. Cubic spline 

MLMs, FDA and LGCMs (Sterba, 2014) were used to extract 

the number, timing and values of maxima and minima; hourly 
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fitted values; and within observation-unit error variation. 

These were compared to features of recorded observation-unit 

level functions. 

 

 

3.2 Empirical analysis 

Bicycle trip data from Transport for London 

(cycling.data.tfl.gov.uk) for 14 London Underground strike 

days and 14 non-strike (7 days before each strike) were 

included in analysis. A random sample of 5% of routes was 

selected due to computational limitations. For each route on 

each day, cumulative bicycle counts were generated from 

midnight to 12pm.  

FDA was used to model bicycle counts as the ideal 

multiple-failure, parametric survival models could not be 

implemented. This assumes that counts reflect an underlying 

continuous process of bicycle demand. The timing of the 

fastest increase in bike counts (MPBD) was identified using 

the derivative functions for each route. Average peak times 

were examined visually. Multilevel models were used to 

investigate the relationship between strikes the timing of 

MPBD, and if this varied according to the degree of origin or 

destination nodes or journey distance. 

 

 

4 Results 

4.1 Simulations 

Table 1 shows distributions of differences between true and 

estimated error standard deviations and the number and 

location of maxima and minima. Due to ‘distortion’ of the 

time axis used to capture complex patterns, LGCMs are only 

defined at the measurement times. Therefore, they could not 

capture maxima and minima or hourly fitted values. LGCMs 

consistently overestimated error variation.  

MLMs estimated the error variation most accurately and 

precisely, followed by FDA which slightly underestimated 

this. MLMs captured the correct number of maxima and 

minima in a greater proportion of observation-units, however 

FDA estimated the time and value of these more accurately. 

 

 

4.2 Empirical data 

Table 2 summarises MPBD times and journey distance for 

strike and non-strike dates. Peak time distributions are similar, 

journey distance is slightly longer on strike days. Figure 1 

shows that average peak times for routes leaving each bicycle 

docking station on strike and non-strike dates appear to be 

similar, but journeys towards the edges of the map appear 

longer and more commonly directed towards the city center 

on strike days than non-strike days.  

Table 3 shows results from three models estimating the 

relationship between London Underground strikes and 

MPBD. The biggest plausible change in peak times due to 

strike is approximately 5.5 minutes earlier. There is no 

evidence to suggest that this is altered by origin and 

destination node degree or journey distance. This information 

does not suggest altering timing of redistribution of bikes on 

strike days is necessary.  

 

 

5 Conclusions 

In this preliminary simulation, MLMs and FDA recovered 

pattern features more accurately than LGCMs. However, 

further investigations with more simulations should be 

performed to help identify differences in the performance of 

MLMs and FDA under a range of scenarios with greater 

precision. 

Any changes in MBPD time due to strikes were very small 

and on their own do not lead to any suggestions for improving 

bicycle redistribution on strike days. Changes did not appear 

to vary according to node degree of origin and destination 

nodes, but there was slight variation related to journey 

distance. 

 

 

Table 1: Summary of differences between true simulated pattern features and those recovered by FDA, MLMs and 

LGCMs. 

Method FDA MLM LGCM 

Percentage recovered 

correctly 

Number of minima 24.196 48.225 - 

Number of maxima 16.956 27.643 - 

Mean (95%CI) of 

difference between 

true simulated values 

and fitted values 

Time of minima 0.64(-3.765,9.563) 0.563(-2.382,4.809) - 

Time of maxima 3.53(-2.814,10.513) 4.102(-1.589,10.126) - 

Value at minima -0.32(-3.455,2.357) -4.43(-7.97,-0.46) - 

Value at maxima 0.846(-2.567,7.344) -5.075(-10.377,1.042) - 

Within person 

variation SD -0.341(-0.774,0.161) 0.013(-0.485,0.714) 1.022(-0.24,3.335) 

Modelling errors (out of 100 possible) 0 1 73 

Source: Simulated data 

Table 2: Summary of MPBD and journey distance on 

strike and non-strike days 

Strike Median (IQR) 

peak time (hours) 

Median (IQR) journey 

distance (km) 

No strike 6.28 (5.53,7.82) 3.32 (1.71,4.36) 

Strike 6.26 (5.35,7.82) 3.74 (1.87,4.94) 

Source: Data from Transport for London 

(cycling.data.tfl.gov.uk) 
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Table 3: Results from four multilevel models examining the relationship between London Underground Strikes and peak morning 

travel times for routes in the London Bicycle Sharing Network. Model 2 investigates any modification of this relationship by the 

degree of the origin node, Model 3 by the degree of the destination node and Model 4 by the distance between origin and 

destination nodes. 

Covariate Fixed effects coefficient (95%CI) Random effects standard deviation (95%CI) 

Model 1 
  

Intercept 6.33 (6.279, 6.381) 0.914 (0.861, 0.966) 

Strike -0.031 (-0.088, 0.026) 
 

Residual 
 

1.574 (1.549, 1.599) 

Model 2 
  

Intercept 6.333 (6.282, 6.384) 0.915 (0.862, 0.967) 

Strike -0.032 (-0.089, 0.025) 
 

Strike*Origin Degree -0.009 (-0.02, 0.002) 
 

Origin Degree 0.007 (-0.001, 0.015) 
 

Residual 
 

1.573 (1.549, 1.598) 

Model 3 
  

Intercept 6.331 (6.28, 6.382) 0.913 (0.86, 0.965) 

Strike -0.03 (-0.087, 0.027) 
 

Strike*Destination Degree -0.013 (-0.025, -0.002) 
 

Destination Degree 0.004 (-0.004, 0.013) 
 

Residual 
 

1.574 (1.549, 1.598) 

Model 4 
  

Intercept 6.334 (6.283, 6.385) 0.914 (0.861, 0.966) 

Strike -0.029 (-0.086, 0.029) 
 

Strike*Journey Distance -0.011 (-0.036, 0.015) 
 

Journey Distance -0.006 (-0.028, 0.017) 
 

Residual   1.574 (1.549, 1.598) 

Source: Data from Transport for London (cycling.data.tfl.gov.uk) 

Figure 1: Map showing summary of journeys from bicycle stations across London. Arrow size is proportional to average 

journey distance and direction depicts the circular mean journey direction. Average peak time for routes leaving each station 

is indicated by colour. 

 
Source: Data from Transport for London (cycling.data.tfl.gov.uk) 



AGILE 2019 – Limassol, June 17-20, 2019 

 

 

6 Acknowledgements 

Sarah Gadd is funded by the Economic and Social Research 

Council (ESRC). Alison Heppenstall is funded by an ESRC-

Alan Turing fellowship. Peter Tennant and Mark Gilthorpe 

are funded by the Alan Turing Institute. Data were provided 

by Transport for London.  

 

 

References 

Bollen, K.A. & Curran, P.J. (2005). Latent curve models: a 

structural equation perspective. John Wiley & Sons, Hoboken, 

NJ. 

 

Corcoran, J., Li, T., Rohde, D., Charles-Edwards, E. & 

Mateo-Babiano, D. (2014). Spatio-temporal patterns of a 

Public Bicycle Sharing Program: The effect of weather and 

calendar events. Journal of Transport Geography, 41, 292-

305. 

 

Fuller, D., Sahlqvist, S., Cummins, S. & Ogilvie, D. (2012). 

The impact of public transportation strikes on use of a bicycle 

share program in London: interrupted time series design. 

Preventive medicine, 54, 74-76. 

 

Gebhart, K. & Noland, R.B. (2014). The impact of weather 

conditions on bikeshare trips in Washington, DC. 

Transportation, 41, 1205-1225. 

 

Goldstein, H. (2011). Multilevel statistical models. Wiley, 

Chichester, West Sussex. 

 

Ramsay, J.O. & Silverman, B.W. (1997). Functional data 

analysis. Springer, London; New York. 

 

Saberi, M., Ghamami, M., Gu, Y., Shojaei, M.H. & Fishman, 

E. (2018). Understanding the impacts of a public transit 

disruption on bicycle sharing mobility patterns: A case of 

Tube strike in London. Journal of Transport Geography, 66, 

154-166. 

 

Sterba, S.K. (2014). Fitting Nonlinear Latent Growth Curve 

Models With Individually Varying Time Points. Structural 

Equation Modeling-a Multidisciplinary Journal, 21, 630-647. 

 


