
1 Introduction 

Fine particulate matter with aerosol dynamic diameters equal 

to or less than 2.5 micrometers (PM2.5) has been identified as 

one of the three leading risk factors for human health. Exposure 

to PM2.5 is estimated to cause 3.2 million premature deaths 

every year globally. To study and mitigate the adverse effects 

of PM2.5 exposure on public health, accurately measuring 

ground-level PM2.5 concentrations is of essential importance.  

The ground-based monitoring systems can provide accurate 

PM2.5 measurements. However, no country in the world has yet 

established a monitoring network with a satisfying population 

coverage. Even in the United States (U.S.) the relatively 

developed PM2.5 monitoring network with approximately 2,500 

monitoring stations leaves many people living in suburban and 

rural areas unmonitored (Liu et al., 2018). To monitor the 

ground-level PM2.5 concentrations at large geographical scales, 

remote sensing has proven to be a useful tool. A close 

relationship was found between the ground-level PM2.5 

concentration and satellite-observed variables, e.g., aerosol 

optical depth and land surface characteristics, which can be 

exploited to improve the PM2.5 concentration mapping for large 

geographical areas. In this poster, we describe a statistical 

approach to integrate the advances in machine learning and 

geostatistics to exploit this close relationship for high 

resolution mapping of ground-level PM2.5 concentrations.  

Random forests (RF) is a commonly used machine learning 

method to capture the complex non-linear relationships 

between the response variable and related predictors (Breiman, 

2001). In geostatistics literature, regression kriging (RK) 

represents a practical approach to integrate the linear regression 

and conventional kriging method for geostatistical mapping 

while accounting for spatial dependence (via kriging) of 

response variable and linear relationship with predict variables 

(via linear regression). Recently, a random forests-based 

regression kriging (RFRK) was proposed to replace the linear 

regression component in RK with random forests to consider 

the complex non-linear relationships between response and 

predictors (Hengel et al, 2015). The RFRK has shown 

performance advantages in mapping applications including 

mapping PM2.5 concentrations (Liu et al., 2018).  The previous 

study of Liu et al., (2018) adopted the RFRK method to refine 

a numerically derived dataset of PM2.5 concentrations (with 10 

km resolution) into a dataset with finer spatial resolution (1 

km). Despite the improvements in spatial resolution and 

accuracy, the reliance on numerical models in Liu et al. (2018) 

limits the temporal resolution of results (at yearly). To mitigate 

this issue, this study extends the work of Liu et al. (2018) and 

applies the RFRK directly to in-situ PM2.5 measurements and 

closely related meteorological variables and geographic 

variables (e.g., anthropogenic or socioeconomic development 

factors) to improve the ground-level PM2.5 concentration 

mapping.   

The meteorological variables used in this study include total 

precipitation, mean temperature, average dew point 

temperature, and vapor pressure deficit. The geographic 

variables include remote sensing imagery of nighttime lights 

that has been shown as a reliable proxy of socioeconomic 

development, vegetation coverage (NDVI) and topography. 

The in-situ PM2.5 measurements are collected from the air 

quality monitoring network of U.S. Environmental Protection 

Agency’s (EPA) that are primarily located in populated urban 

areas and Interagency Monitoring of Protected Visual 

Environments (IMPROVE) that are mostly in remote areas and 

national parts.  
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Abstract 

 
Fine particulate matter with aerodynamic diameters equal to or less than 2.5 micrometers (PM2.5) is a major component of air pollutants. 

The adverse effects of PM2.5 on public health have been well recognized. In this poster, we propose a statistical approach to integrate random 

forests, a commonly used machine learning algorithm, and regression kriging, a recognized geostatistical method, for high-resolution mapping 
of ground-level PM2.5 concentrations. This approach jointly considers the heterogeneous geospatial variables that are closely related to the 

distribution of PM2.5, including meteorological factors, socioeconomic development activities, and topographic information. The integration 

of the machine learning and geostatistical methods enables the effective modeling of the non-linear relationships between the PM2.5 

concentration and the predictor variables (via random forests) and the complex spatiotemporal effects (via kriging). Using this integrative 

approach, we produce a time-series (January 2014 to December 2014) monthly PM2.5 concentration dataset at a spatial resolution of 500 m 

for the contiguous United States. The advantages of the proposed approach are discussed and highlighted with a performance comparison 
with a commonly used land use regression method. 
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2 Method 

2.1. Random forests-based regression kriging 

Given a location 𝑠0, the RFRK estimation of the PM2.5 

concentration at 𝑠0, �̂�(𝑠0), can be written as: 
 

�̂�(𝑠0) = 𝑓𝑅𝐹(𝑁𝑇𝐿0, 𝑁𝐷𝑉0, 𝐸𝐿𝐸0, 𝑇𝐸𝑀0, 𝐷𝐸𝑊0 , 𝑃𝑅𝐸0, 𝐴𝐼𝑅0;  �̂�)
+ 𝜀̂(𝑠0) 

 

where 𝑓𝑅𝐹() represents the deterministic trend modeled by 

random forests with parameters �̂�, and NTL, NDV, ELE, 

TEM, DEW, PRE, AIR denote brightness of nighttime lights, 

NDVI, elevation, mean temperature, dew point temperature, 

precipitation, and air pressure respectively. 𝜀̂(𝑠0) represents 

the spatially correlated residuals that can be modeled with 

kriging to account for complex spatial patterns. The NTL, NDV, 

ELE, TEM, DEW, PRE, AIR values of each monitoring station 

are extracted from the corresponding imagery datasets and then 

put into the RF model to establish the relationships between 

PM2.5 concentration and covariates. The monthly average PM2.5 

concentration dataset for the contiguous U.S. during January 

2014 to December 2014 are produced at a spatial resolution of 

500 m × 500 m. The performance of the RFRK methods is 

compared with the commonly used Land Use Regression 

(LUR) model to show the advantages of the RFRK method.  

 

2.2. Accuracy assessment 

 

A 10-fold cross-validation method is adopted to quantitatively 

assess accuracy of the RFRK-PM2.5 and the LUR-PM2.5 

concentration datasets. In each fold of the validation, 90% of 

the in-situ PM2.5 measurements are selected to compose a 

training dataset for the RFRK and the LUR models and the 

remaining 10% of the PM2.5 data are used for test. 

 

3 Results 

3.1. Model performance 

Figure 1 illustrates the differences of the average RMSEs, 

MAEs, and R2s of the 10-fold cross-validations for each month 

between the RF and the LUR models. Except October, the 

RMSEs and MAEs of the RF model are apparently lower than 

those of the LUR model. For the October, the RMSE and MAE 

of the LUR model are slightly higher than those of the RF 

model. Compared with the LUR-PM2.5 concentration dataset, 

accuracy of the RFRK- PM2.5 concentration maps are more 

stable, demonstrated that the RMSEs and MAEs of the RF 

model maintain2.0µg/m3 (±0.05µg/m3) and 1.7µg/m3 

(±0.1µg/m3) while those of the LUR model vary greatly across 

the 12 months (see Figure 1). Specifically, the LUR- PM2.5 

concentration dataset shows much larger errors in winter 

season. The better performance of the RF model can also be 

shown by the larger fitting R2 values for all of the 12 months. 

Except for April, the R2 values of the RF model are all higher 

than 0.6 while those of the LUR model are nearly all smaller 

than 0.4. 

 

3.2. Spatiotemporal variations 

Figure 2 displays the RFRK-derived monthly average PM2.5 

concentration images for 12 months of 2014 at the 500 m × 500 

m spatial resolution. For each of the given months, the PM2.5 

concentrations are apparently higher in the Eastern part than in 

the Western part. The large population densities in the Eastern 

region of the contiguous U.S. lead to more emissions PM2.5 

from commercial and industrial activities and therefore 

associate with high PM2.5 levels. California Valley is an 

exception in the West region. The California Valley, especially 

in the winter season (i.e., November, December, and January), 

has apparently higher PM2.5 concentrations than its surrounding 

regions. The closed terrain of the California Valley greatly 

constrains diffusion and dispersion of air pollutants and so 

leads to high PM2.5 concentrations. Furthermore, the dominant 

meteorological conditions of California valley in winter are 

cool and moist with low wind speed, which promotes the 

formations of the secondary PM2.5 components (Liu et al, 

2017). 

 

4 Conclusion 

This study highlights the potential of combining machine 

learning and geostatistical methods on mapping concentrations 

of air pollutants. Compared with the commonly used LUR 

model, the RFRK method can simultaneously consider the non-

linear relationship with predictor variables (with RF) and the 

complex spatial effects (with kriging) in a practical and 

effective manner. Additionally, we also show the effectiveness 

of the selected geographical variables in ground-level PM2.5 

concentration mapping, particularly the brightness of NTL 

extracted from the VIIRS-DNB monthly image composites as 

a comprehensive indicator of human activities. In the future, we 

plan to exploit the capabilities of deep learning methods (e.g. 

recurrent neural network) to replace the present random forests 

in the hybrid model to produce more accurate PM2.5 

concentration maps at finer spatiotemporal resolutions.  
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Figure 1: Accuracy comparisons between RFRK and LUR:  RMSEs, MAEs, and R2s of the RFRK model and the LUR model in 

the 100-time cross-validation during each month in the year 2014. 

Figure 2: Monthly RFRK-PM2.5concentration dataset for the contiguous United States during the year of 2014 


