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1 Introduction 

Flows are commonly represented as directed mathematical 

graphs. That is, each location where the flow can come from 

or lead to is represented as a node.  A connection between 

every two nodes is then weighted with the flow size. Flow 

networks are used to investigate a number of social science 

phenomena, for example flows inferred from mobile phone 

data (Expert et al. 2011), migration flows (Peter J. Taylor, 

1975), commuting flows (Sila-Nowicka et al. 2016), or taxi 

flows between pick‐up and set‐down points (Demšar et al. 

2018). In geography, the most common approach for 

analysing flow data is to fit spatial interaction models to 

describe the movement across space that results from a 

decision-making process (Kordi and Fotheringham 2016). In 

this paper, we take an alternative approach to studying spatial 

flows using a community detection algorithm, where 

communities are defined as subsets in a network in which 

connections between nodes are dense, but connections 

between two such subsets are sparse. (Girvan & Newman 

2002) 

Physical models have been used in community detection for 

flows of mobile phone, web or social network data (Girvan & 

Newman 2002). However, physical models typically do not 

consider the value of the geographical information contained 

inside nodes of the network (Expert P et al. 2011). They 

mainly use the number of connections between two nodes, 

completely ignoring geographical linkages between them, 

consequently giving the same value to the connections 

between two geographical neighbours and connections 

regardless of their geographical context. When dealing with 

geographical flow data, using the location of the nodes and the 

distance between them has a potential to lead to more insight 

into the phenomenon of human movement. For example, 

Kempinska et al. (2018) create the flow network from the 

street network, where street intersections are used as nodes 

and streets as links to detect communities from GPS tracks of 

the police cars. 

To demonstrate the importance of distance in the analysis of 

geographical flows, we have taken an existing community 

detection algorithm (Louvain algorithm; Blondel et al. 2011) 

and modified it in a way that explicitly considers the distance 

between two nodes in the calculation of communities. We 

applied the new algorithm to the Scotland commuting data 

from UK Census (ONS 2011). We further compared the two 

methods, the original community detection and our spatialised 

version, by calculating their modularity scores, the number of 

generated communities and through a visual comparison.  

 As this is work in progress, we only present some 

preliminary results, which however do already show that 

using distance in community detection influences the result. 

The rest of the paper is structured as follows: in section 2 

we explain how the chosen community detection algorithm 

works and how we have integrated the distance into the 

algorithm, in section 3 we present some preliminary results, 

and in section 4 discuss the results and list some of our 

conclusions.  
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Abstract 

A flow network is a directed graph in which each edge has an origin and a destination, and the edge represents movement from one point to 
another. With constantly increasing number of devices and methods for collecting location information, flow networks are becoming larger, 

denser and more complex. Many physical models have been developed for exploring the structure of flow networks, however in most cases 

interpretation considers only the number of flows and ignores relevant geographical context. In this paper we demonstrate how geographic 
distance can be used to improve the process of a standard physical model for flow network structure: community detection. We incorporate 

distance between two areas in the computation of the Louvain community detection algorithm. The results are compared to the result of the 

original method using a flow data set on commuting flows in Scotland. A preliminary evaluation of results shows that including 
geographical distance enables us to obtain a different insight from the network and provides more detailed information about local patterns 

of commuting in Scotland, which is lost in a non-spatial version of community detection.  
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2 Materials and methods 

To test the effect of geographical distance on community 

detection, we have constructed an undirected flow network 

using commuting data from UK Census 2011 (ONS 2011, 

Figure 1). The lowest level of the geographical level at which 

census data are provided is called the output area (OA). OAs 

were designed in a way that they have similar population size 

and to be as socially homogenous as possible (ONS  2018). In 

our network, every node represents one output area in 

Scotland and links between two output areas represent the 

number of commuter flows in-between two areas. 

 

Table 1 Statistical information about dataset 

Number of output areas 46 351 

Number of flows 1 966 097 

Number of flows (without intra-zonal trips) 1 944 545 

Maximum length 647 km 

Average length 13.4 km 

Minimum number of flows from/to single OA 1 / 1 

Maximum number of flows from/to single OA 100 / 4950 

 

 

 

Figure 1 Commuting flows between Scottish output areas.  

 
 

 

2.1 Defining the network 

The network was constructed from commuting flows (work-

home) using the total number of flows between each two 

output areas. That is, we constructed the undirected flow 

network by summing flows from place A to place B and flows 

from B to A into a single value which was then assigned to 

the edge between A and B. The reasoning behind this is, that 

in this experiment we do not evaluate orientation and direction 

of commuting, but rather how strong the connection between 

two output areas is (de Montis et al. 2013). Also, flows that 

are pointing to themselves (the so-called intra-zonal trips, i.e. 

trips of people who live and work in the same output area) are 

not considered in this analysis (Bhatta, 2011). 

Next, we calculated the adjacency matrix of the flow 

network. Adjacency matrix for the undirected network is a 

symmetric matrix  , whose element     represents the weight 

of the connection between node i and node j. To incorporate 

distance in the adjacency matrix, we are using the so-called 

distance decay effect (Taylor, 1975), which says that spatial 

interaction is closely connected to distance, i.e., people are 

more likely to travel shorter distances to work to minimize 

transport costs. 

We have incorporated the effect of the distance into the 

weights matrix           where   is number a of total 

flows between node   and node  , and      is a function of 

distance. In the continuation of this paper, we will be 

exploring how different choices for the distance function 

produce different results.  

 

2.2 Community detection algorithm 

To test the different effects of the distance, we have chosen 

to use an existing algorithm, the Louvain algorithm (Blondel 

et al. 2008), and included the distance effect in link weights. 

This community detection algorithm allows us to include link 

weights, find the community hierarchy structure and 

calculation speeds. Moreover, we can get insight into the 

quality of generated communities by comparing modularity 

values of the partitions. 

The Louvain algorithm has two phases. In the first phase, it 

creates communities through modularity optimisation. 

Modularity is a measure of the quality of a particular division 

of a network. It ranges from -1 to 1 and represents how dense 

are the links inside communities in comparison to links 

between communities (Girvan & Newman 2003).  For the 

weighted network as ours, modularity is calculated as follows 

(Newman 2004): 

  
 

  
∑ *    

    

  
+  (     )  .   (1) 

Here    is the weight of the edge between the nodes   and  , 

   ∑      is the sum of the weights of the edges attached to 

node  ,    is the community to which node   is assigned, the  -

function        is 1 if     and 0 otherwise and 

  
 

 
∑      .  

We begin with a same number of communities as there are 

nodes in the network, then for each node, we check if moving 

it from its current community to another one gives a gain in 

the modularity. If the modularity gain is positive, the node is 

assigned to the community which has the highest increase in 

modularity. Otherwise, the node stays in its original 
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community. This process is then repeated for each node until 

there is no more modularity gain (a single node can be 

checked and moved into a different community several times).  

In the second phase, a new network is created by using 

communities from the first phase as nodes, where link weights 

between nodes are the sum of all weight between nodes of two 

connecting communities. Completion of these two phases 

creates one level of the hierarchy. Then the process is repeated 

by using the newly created communities as input data in next 

iteration, thus creating higher and higher level of community 

groupings. The algorithm usually finishes after two to four 

passes. 

The efficiency of the algorithm is based on the ability to 

calculate the gain in the modularity    very fast.    for 

moving an isolated node   into community   is calculated as: 

   [
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] (2), 

Where ∑    is sum of weights of the links inside  , ∑     is 

the sum of the weights of the links incident to nodes in  ,    

is the sum of the links incident to node  ,       is the sum of 

the weights of the links from   to nodes in   and   is the sum 

of the weights of all the links in the network. (Blondel et al. 

2008). 

  Note that this algorithm is general and has no 

consideration for geographic distance or geography (e.g. 

location) in any way.   

 

2.3 Introducing the geography 

To incorporate geographic distance into the community 

detection, we are proposing two ways of modelling the 

distance as part of the link weights: as an inverse power 

function (3) and as a negative exponential function (4). These 

both decrease in value with increasing distance but do so at 

different speeds. The two functions are: 

            (3),  

             (4), 

where   is the number of flows between nodes   and  ,   is 

the geographic distance between the two nodes and   is a 

parameter that defines the importance of the distance measure 

and is subject to optimisation. We have chosen two 

approaches to setting the parameter; as a value dependant on 

how large we want our communities to be, and as an unbiased 

constant. 

Choosing the value for parameter k is a computational 

problem of itself. We take a heuristics approach to choosing k, 

while in the future we will consider experiments to optimise 

this parameter properly, as the goal is to find a balance 

between the distance and the number of flows. To avoid 

punishing distance too hard, we have chosen for   to be a 

ratio of     and average length of a flow      or maximum 

length of flow     . Changing the denominator allows us to 

present interaction at different scales. In addition to that, we 

will use fixed values of  , where          . We are using 

value of     to get insight in how community detection 

works if the distance is not used (i.e. this is the original 

Louvain algorithm). As  mentioned above, this is not the 

optimal way of choosing the value for  , as it depends on the 

type of network and planned usage of the results, but in this 

experiment, it will let us explore the general structure of the 

network and how including the distance changes the 

communities. Values for k are shown in Table 2. 

 

Table 2  Distance function parameters 

k for inverse power 

function (eq. 3) 

k for inverse exponential 

function (eq. 4) 

0 - 

1 1 

2 - 

   

    
 

 

    
 

   

    
 

 

    
 

 

One of the advantages of the Louvain algorithm is its ability 

to identify the community structure on multiple hierarchy 

levels. As nodes in our network represent the lowest 

geographical level at which census data are provided, each 

pass of the algorithm creates a new geographical level with 

nodes from the previous level aggregated into new nodes 

based on the network structure, as explained above. 

 

Figure 2 Visualisation of the Louvain model hierarchy 

structure found in each step of the algorithm. 
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Figure 3 Side by side comparison of six different community partitions: A – no geography, B – power function with k = 

1, C  -  power function with k = 2, D  – power function with k = 
𝒅𝒊𝒋

𝒅𝑨𝑽𝑮
 , E –  power function with k = 

𝒅𝒊𝒋

𝒅𝑴𝑨𝑿
, F – 

exponential function with k = 1 

 

3 Results 

In this section, we show how the number of communities 

and modularity changes depending on used distance function 

and its parameters. Results are shown only for the top 

hierarchy level. 

By using distance decay to the model importance of flows, 

we have a higher number of detected communities than by 

just using the number of flows, as visible in Figure 3. Using 

inverse power function has shown better and more 

controllable results than by using the negative exponential 

function. Figure 3 shows us the partition with optimal 

modularity for some of the functions. Partition where distance 

is not used (Figure 3A), shows a small number of large 

communities, while all the other partitions (Figures 3B-F) 

show increase in the number of communities and 

improvement in resolution. Especially interesting is increase 

in the number of the communities in rural areas (Scottish 

Highlands). Modularity of partition and number of generated 

communities for each of the functions are shown in Table 3 

and Table 4.  

As k=0 represents results where distance is not included in 

community detection, we can see an increase in both the 

numbers of communities and modularity score when the 

distance is used. Values for power function show lager span in  

the number of communities and their size, while using 

exponential function does not show that difference in number 

between using average or maximum distance. Using k>2 

would put too much importance on distance and ignore 

number of flows. 

Table 3 Modularity scores and number of communities for 

inverse power function 

k values for (3) 
Optimal number 

of communities 

Optimal modularity 

score 

0 17 0.732 

1 68 0.906 

2 287 0.975 

   

    
 183 0.945 

   

    
 20 0.770 

 

 

 

Table 4 Modularity scores and number of communities for 

inverse exponential function 

k values for (4) 
Optimal number 

of communities 

Optimal 

modularity score 

1 271 0.959 

 

    
 33 0.838 

 

    
 18 0.737 
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4 Conclusions and Discussion 

In this paper, we incorporate geographic distance in a 

popular community detection algorithm to show how this can 

provide more detail on local patterns in mobility flows. 

Our method enables us to extract information from 

migration flows that were previously not available. By 

changing the k parameter, we can manipulate the size of the 

communities and how far they reach, which would allow us to 

investigate how far the effect of distance decay on commuting 

reaches.  This could be useful in urban planning, for example, 

to delineate new regional divisions or in market-based 

research (Farmer and Fotheringham 2011). Best results were 

achieved by using inverse power function (3) with k as a ratio 

between the distance of the flow and some proprietary 

distance (average distance in our case). While some results 

show higher modularity scores, we believe that having a  

balanced ratio between number of flows and distance is more 

important. 

As the method is based on the Louvain algorithm, it inherits 

its scalability and speed (processing of the graph with more 

than 1M of flows takes seconds) but preparing the data can be 

a lengthy process (calculating the length of the flows in the 

network took just over 4 hours). Additionally, the right 

balance between the number of flows and the distance still 

needs to be explored and optimized. Another improvement 

would be using alternative measures of distance (e.g., the road 

network distance) instead of the Euclidian distance to take 

natural boundaries into account. 

By using predefined parameters of community size and 

reach, we can get a new insight into flow structure and human 

movement. With the right data, we could also track how 

communities are changing over time and correlate those with 

outside factors. For example, using subsets of commuting 

data, we could track how commuting regions change 

depending on the weather, how the opening (or closure) of a 

new road changes movement patterns or study broader scale 

migration patterns.  
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