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1 Introduction 

Runoff is the process by which water (and suspended 

sediment and chemical products from agricultural 

applications, such as fertilisers and pesticides), passes over the 

land surface to water bodies. Runoff is a major driver of water 

pollution. This paper describes recent research that has 

developed a generic framework for real-time predictions of 

agro-chemical runoff risk at two scales of decision making: 

field scale for on-farm decisions about agro-chemical 

applications risk and catchment scale for drinking water 

abstraction decisions.  

Effective agrochemical use in modern agriculture 

contributes to increased yield and quality. Agro-chemicals are 

less effective if they are washed away soon after they are 

applied and negatively affect water quality and the 

environment if they are transferred to surface or groundwater 

(Mitchell et al., 2005; Gao et al., 2008; Lapworth et al., 2012). 

The risk of runoff is exacerbated by certain weather events, as 

well as plant-soil interactions. Typically, precipitation 

immediately following agrochemical application results in 

surface runoff and the risk of polluted watercourses. Runoff 

risk is enhanced on land that is already saturated or when 

rapid by-pass flow to field drains occurs. This can result in 

pollutant concentrations in surface waters that exceed drinking 

water standards (Petty et al., 2003). Better management of 

agrochemical applications will result in both improved 

agricultural productivity / profitability and improved water 

quality. 

This paper describes the development of tools that provide 

real-time, spatially and temporally dynamic runoff risk 

information. This is demonstrated for 2 examples of agro-

chemical applications at catchment and field scales to support 

drinking water abstraction and on-farm decision making. The 

tools combine live, real-time weather data on rainfall amount 

and probability with landscape models of underlying soil, 

landform, drainage, land use etc. They provide a generic 

framework for modelling the risk associated with any 

agricultural application to the land. The novelty of this 

research lies in the coupling of live spatially distributed 

weather data, assumed in spatiotemporal stacks or data cubes, 

that are interrogated and used to generate proxies for the 

inputs required by soil-water interaction models. This 

approach is facilitated by the ability to link to spatially and 

temporally explicit data through APIs. 

 

 

2 Background 

There is long standing interest in developing spatially explicit 

decision tools to support agriculture. Around 30 years ago, 

tools started to emerge that took advantage of GUI and easily 

programmable GISs (e.g. through ArcView 3.0 and Avenue 

scripting). These were developed to support farming 

compliance under newly legislated environmental directives; 

principally, the Water Framework Directive (WFD, 2000). 

This sought to minimise the externalities of agricultural 

activity on Europe’s water bodies and the decision tools for 

use by both farmers and policy makers were developed over a 

range of spatial supports: nationally at typical scales of 1, 5 

and 10 km2 and Europe wide at scales of 10, 20 and 50 km2. 

Examples of UK models include Webb and Misselbrook 

(2004) Chadwick et al. (2005), Chambers et al. (1999), 

Davison et al. (2008), Lord and Anthony (2000) and (Lord, 
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1992) many of which are summarised in Anthony et al. 

(2008). At the EU scales, similar models include PyCatch 

(Schmitz et al., 2017) and the FOOTPRINT (Functional Tools 

for Pesticide risk Assessment and Management) framework 

which integrates pesticide use information with MACRO 

(Jarvis et al., 2000) for drainage and leaching pathways and 

PRZM (Suarez, 2005) for runoff and erosion pathways. 

The key and necessary characteristic of these process 

models was that their outputs and the scales they reported 

over were spatially and temporally coarse. This is because 

they were underpinned by highly aggregated data by way of 

model inputs such as underlying soil types, drainage, land use, 

climate, terrain characteristics, farming practice, etc. The 

problem was that despite the existence of very detailed and 

precise prediction models for soil water balances and the 

associated runoff, leaching and pollution risks (e.g. Morselli et 

al., 2018; Pullan et al., 2016), these required specific, local 

information that cannot be obtained from generalised GIS 

layers.  

However, the biggest driver of runoff risk is precipitation: 

applications made to very wet soil (at field capacity or wetter) 

or just before heavy rainfall are much more likely to generate 

runoff, regardless of other local and catchment factors (e.g. 

the status of field drains, the topology of the landscape, the 

distance to water course, etc). In the UK, the Meteorological 

Office provides a free API to their weather data and weather 

predictions. These are spatially distributed (either at point 

locations or generalised over 1km2) and temporally explicit 

and include a range of short term (3 hourly for 24 hours) and 

medium term (5 day) predictions and forecasts of precipitation 

probabilities, as well as actual precipitation measures. Linking 

live dynamic precipitation probabilities and measures to field 

and catchment scale runoff models provides the opportunity to 

develop real-time predictions of agrochemical runoff risk. 

Such integration goes beyond the many smartphone apps 

available to farmers that simply report wet weather 

probabilities or general guidance on farm management 

decisions. 

 

 

3 Methods and Results 

Catchment and field scale risk models were developed for 2 

agricultural applications; Metaldehyde (commonly used to 

treat slugs on oil seed rape in arable areas) and Acid Herbicide 

(used to manage grassland weeds in grassland areas), in 2 

contrasting catchments - the Teifi in Wales and the Wissey in 

the east of England. The risk of runoff, for any agrochemical 

application is driven by the local soil water conditions, the 

behaviour and movement of chemicals in each application 

through different types of soils, and the likelihood of 

precipitation in the immediate/short-term period after 

application. The new risk models developed here included the 

following components: live and historical weather data and a 

model of movement through the field or the catchment. These 

are described below.  

 

3.1 Weather data: the Met Office API 

For each study catchment, a link to the Meteorological Office 

API was established to constantly download, 1km2 climate 

data that was stored in raster stack. Having antecedent rainfall 

data (i.e. recent rainfall histories) allows current local water 

balances to be determined. An example of 15-minute data for 

2017 in the Teifi study catchment is shown in Figure 1. 

 

 

3.2 Catchment scale models 

The catchment scale models sought to support drinking 

water abstraction decisions. Runoff risk models of 

metaldehyde in arable areas and acid herbicides in livestock 

farming areas considered loss from agricultural, diffuse (i.e. 

fields) sources only and do not include either point sources or 

additional non-agricultural applications of pesticides in the 

landscape. Absorption or desorption associated with river and 

groundwater biogeochemical processes are also ignored. 

Thus, the models are essentially minimum information 

requirement (MIR) only, capturing critical landscape intrinsic 

risks, with any potential impacts from existing uptake of on-

farm mitigation measures (i.e. business-as-usual) not included 

in model scenarios at this stage. 

 

 

Figure 1: Example of precipitation data from the 

Meteorological Office API. 

 
 

 

All modelling is undertaken using a 1km2 grid. Available 

information on catchment land cover from the June 

Agriculture Survey (JAS) is combined with survey 

information on crop-specific pesticide applications to generate 

spatially explicit pesticide loading surfaces for agricultural 

land. Runoff pathway apportionment (surface, drain flow, 

subsurface) is taken from the PSYCHIC (Phosphorus and 

Sediment Yield Characterisation in Catchments) process-

based model (Davison et al., 2008; Stromqvist et al., 2008; 

Collins and Zhang, 2016). Surface runoff connectivity uses 

distance to river channel, downstream slope length and the 

proportion of terrain that has a slope >3 degrees. Drain flow 

connectivity uses information on the distribution (based on 

capital grant awards to farmers) or requirement for soil 

drainage (based on the HOST – Hydrology of Soil Types; 

Boorman et al., 1995) with estimates of drain efficiency 

(Zhang et al., 2016). Surface and drain connectivity combine 

to estimate landscape connectivity for agricultural land.  

Integration of rainfall data and runoff estimates (land cover-

specific SCS curve number approach) with pathway 

apportionment and associated pesticide loadings, taking 

account of organic carbon associated absorption and 

consequent pesticide degradation, generates spatially explicit 

landscape scale estimates of pesticide risk delivery to 

watercourses.  An overview of the catchment scale model is 

shown in Figure 2 and Figure 3 shows some of the interim 

model components. 
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3.3 Field scale models 

The field-scale runoff risk models sought to support on-farm 

decisions about agro-chemical applications. In this case, the 

model is limited to provide the farmers with a forecast of 

potential runoff from their fields as this is the main variable 

they use to make decision regarding pesticide application. 

Although a soil water balance model could be used to estimate 

runoff in real-time, data and computational requirements are 

an important limitation. To overcome this, a meta-modelling 

approach was used to estimate antecedent soil conditions 

combined with the SCS Curve Number method (USDA, 

2004) to assess potential field runoff from forecasted 

precipitation (Figure 4). 

 

 

Figure 2: The catchment scale runoff risk model 

 
 

 

Figure 3: Overview of the catchment model components 

 

 
 

WaSim (Hess and Counsell, 2000) was used to adjust site-

specific linear regression models to estimate antecedent soil 

water conditions using 10 previous days’ accumulated 

rainfall, number of days since last daily with rainfall above 2 

mm and long-term average daily soil water conditions for the 

time of the year (calculated from historical WaSim results). 

WaSim is a daily soil water balance model that simulates 

changes in root zone soil water content and water table 

position in response to weather and water management. It 

estimates changes in soil water content by combining data on 

rainfall, crop specific evapotranspiration, soil characteristics 

and field drainage. WaSim was run for a series of soil 

characteristics and crop cover permutations using daily 1km2 

resolution weather time series (1961 to 2015) from the CEH 

CHESS dataset (Robinson et al, 2016, 2017). Daily soil water 

content from WaSim was used to adjust the linear regression 

model. The results for the meta-modelling approach show a 

good representation of runoff production despite different 

quality of estimation of antecedent soil water conditions 

(Figure 5). Forecast data from the Met Office API are used 

afterwards to project future soil water conditions and estimate 

runoff risk using the SCS Curve number method.  

 

Figure 4: The field scale runoff risk model 

 
 

Figure 5: Comparison between WaSim and linear regression 

results for antecedent soil water conditions (left) and runoff 

(right) at two locations in the East of England (top) and Wales 

(bottom). 

 
3.4 Model integration 

A generic web-interface was developed to link the data and 

the models. The data included the static data layers for each 

model as well as the dynamic and antecedent rainfall data. A 
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zoomable OSM / Leaflet interface was used to provide 

background mapping. For the field-scale model, a number of 

drop down boxes were provided for uses to enter their 

location either in the form of a grid reference or a post-code, 

and the application type they are interested in, which for this 

proof-of-concept project was either Metaldehyde or acid 

herbicide. After entering their information, the user is 

presented with different surfaces of field level risk relating to 

different timescales. The catchment scale model provides 

higher level synoptic information about drinking water 

abstraction risk across the entire catchment. It links static 

layers and coarser models of landscape water flows and 

pesticide delivery. In both cases risk predictions are made in 

timescales from now to 5 days’ time, with associated 

decreasing certitude. 

 

 

4 Discussion 

The individual components of the tools developed by this 

project are not new: field and catchment scales of pesticide 

and herbicide runoff have existed for a long time. There are 

many weather forecasting websites, smartphone apps and 

tools. As yet, however, real-time forecasting and soil water 

models have not been linked. This is despite rainfall being the 

major dynamic (i.e. changing) factor associated with runoff 

and many other environmental processes. Up until now, many 

of the data inputs to models have been relatively static: 

cropping systems, measures of catchment scale field drainage, 

etc, which do not change much from year to year and at the 

field scales. Nor do soil water interactions and pesticide 

persistence. In both cases, the major dynamic model 

components are those related to rainfall (antecedent or 

forecast). In past models, these have had to be assumed under 

a suite of potential scenarios that the user has to chose from. 

However, the ability to link to spatially and temporally 

explicit data through APIs offers a new avenue for enhancing 

and breathing new life into the wider application and utility of 

soil-water interaction models. In the future, all geo-spatial 

data will be served to users in this way via distributed portals 

(rather than sitting on someone’s hard drive).  

 This research has explored how dynamic spatio-temporal data 

can be linked to statistical datasets and models at farm and 

landscape scale to improve decision-making, using a case 

study of 2 agricultural applications in 2 case study areas. The 

method (and the underpinning models) could be used to 

determine the risks to water quality and the wider 

environment associated with any agricultural application – 

fertilisers, pesticides, fungicides, insecticides – at the farm 

decision scale or at the landscape management scale.  

The next steps in this project are to liaise with famer groups 

and water companies responsible for ensuring drinking water 

quality, to refine the model outputs in order to better support 

on the ground decision-making.  
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