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 1     Introduction 

Gas pipeline networks are often threatened by the impacts 

of land displacement and deformation caused by landslides 

(Kenny et al., 2105). The long linear shape of these networks 

makes them prone to being affected by land deformations. 

Especially those that pass through mountainous areas are 

more vulnerable to the consequences of this phenomenon 

(Baum et al., 2008). S-MCDM models are powerful 

methodologies that support decision makers in natural hazard 

risk assessment through the mapping of highly susceptible 

areas (Erlacher et al., 2017). They are used to combine 

geographical data into a single index of assessment. The AHP 

is one of the most common techniques of S-MCDM and has 

been used for a number of complex spatial decision-making 

problems (Cabrera-Barona, and Ghorbanzadeh, 2018). 

However, this technique requires experts with highly relevant 

knowledge to prepare pairwise comparison matrices in a 

professional manner (Franek and Kresta, 2014). The criteria 

weightings resulting from the AHP strongly depend on the 

decisions provided by the experts, which can be a major 

source of uncertainty in this technique (Ghorbanzadeh et al., 

2017). In response to this drawback of the AHP, some 

researchers have started to use an integrated approach of 

sensitivity and uncertainty analysis for S-MCDA (Feizizadeh 

and Kienberger, 2017; Erlacher et al., 2017; Ghorbanzadeh et 

al., 2017). Sensitivity analysis measures the response of the 

model to variations in the input dataset (Neshat et al., 2017). 

This process can indicate the confidence level. Uncertainty 

analysis can also reduce uncertainties associated with S-

MCDA techniques, and it is able to parameterize the stability 

of the resulting criteria weightings (Feizizadeh and 

Kienberger, 2017). In this study, we aim to address the 

improvement of the resulting LSM through the SESUA 

technique in Marand County, north-western Iran, and identify 

areas in which gas pipeline networks are threatened by 

landslides. 

 

2      Study Area and Dataset 

The study area was Marand County, with an area of 3286 

km2, in the northwest of Iran (Figure 1). The altitude of this 

mountainous County ranges from 900m in the stream beds to 

3125m above mean sea level on mountain picks. Landslides 

are common in the northwest of Iran and in the Marand 

County in particular (Feizizadeh and Ghorbanzadeh, 2017). 

The convergence of the Arabian and Eurasian plates in this 

area leads to complex geological setting, intense faulting, 

extreme earthquakes and active volcanoes (Karakhanian et al., 

2004). All these factors make the slopes of the study area 

potentially vulnerable to landslides. This county is located at 

the end of the ninth Iranian national gas pipelines. This 

pipeline is 56 inches in diameter and 1863 km in length, from 

Assalouyeh in the south of Iran to the border of Turkey in the 

northwest of Iran. The pipeline has a capacity of 110 million 

cubic meters per day, with 17 gas pressure booster stations. 

Because Marand County is at the end of the gas pipeline 

network, the gas pipeline is connected to a 40-inch gas 

pipeline of a neighboring county, to prevent the loss of 

sustained pressure (Khosravi, 2017). For our research, 

geology, topography, anthropogenic and climate factors were 

selected based on the knowledge of experts, according to the 
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Abstract 
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used in the first phase to derive the weightings of related criteria, namely: lithology, land cover, rainfall, elevation, slope, aspect, and 
distance to faults and streams. In the second phase, a Monte Carlo simulation (MCS) was used to evaluate the uncertainty and sensitivity of 

areas susceptible to landslides based on the derived criteria weightings. Finally, a landslide inventory database was used to validate the 

results. The integrated SESUA technique indicated 7.1 % of gas pipeline networks cross highly susceptible landslide areas in our case study. 
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field studies of active landslides. We used a dataset of eight 

related causal criteria which prepared based on mentioned 

four main factors, along with considering related literature 

input datasets e.g., Khosravi (2017). Our input dataset 

consisted of rainfall, lithology, land cover, elevation, slope, 

aspect, and distance to faults and streams (Table 1). A 

landslide inventory dataset with a total of 26 landslides was 

separated randomly into two datasets for training and 

validation. The landslide inventory was collected within a 

field survey. All layers of input and inventory datasets were 

prepared in ArcGIS software as raster layers with a resolution 

of 30 m. 

 

 

Figure 1: Location of Marand County, gas pipeline networks and landslide inventory. 

 
 

 

 

Table 1: Criteria, sub-criteria, pairwise comparison matrices, number of known landslides in each class and data source. 

Criteria Sub-criteria Pairwise comparison matrices Eigenvalues CR Land 

slides 

Land 

use/cover 

         

(1) Settlement 1     0.053  0 

(2) Irrigated agriculture 3 1    0.067  0 

(3) Orchard 8 7 1   0.235  0 

(4) Grassland 9 8 3 1  0.325  6 

(5) Bare soil & rock bodies 9 8 3 3 1 0.320 0.054 17 

Rainfall 

(mm) 

         

(1) 159.5 - 193.5 1     0.170  0 

(2) 193.5- 227.5 3 1    0.320  13 

(3) 227.5- 261.2 4 3 1   0.510 0.075 13 

Geology          

(1) Low / High terraces 1     0.061  10 

(2) Conglomerates 3 1    0.095  1 

(3) Volcanics 5 5 1   0.315  6 

(4) Limestones 6 6 2 1  0.527 0.069 7 

Distance 

to fault 

(m) 

         

(1) 0 -1000 1     0.641  7 

(2) 1000 - 2000 1⁄5 1    0.221  3 
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(3) 2000 - 3000 1⁄7 1⁄3 1   0.086  2 

(4) 3000 < 1⁄9 1⁄6 1⁄2 1  0.050 0.053 14 

Elevation 

(m) 

         

(1) 910 - 1.274 1     0.076  0 

(2) 1.274 -1.611 9 1    0.239  0 

(3) 1.611- 1.990 9 8 1   0.393  21 

(4) 1.990 - 2.429 8 7 7 1  0.173  5 

(5) 2.429 - 3.252 7 1⁄7 1⁄6 1⁄6 1 0.119 0.072 0 

Slope 

(%) 

         

(1) 0 - 5 1     0.053  0 

(2) 5 - 10 3 1    0.067  0 

(3) 10 - 15 8 7 1   0.235  7 

(4) 15 - 20 9 8 3 1  0.325  13 

(5) 20 < 9 8 3 3 1 0.320 0.054 6 

Distance 

to stream 

(m) 

         

(1) 0 -100 1     0.527  8 

(2) 100 - 200 1⁄3 1    0.315  9 

(3) 200 - 300 1⁄5 1⁄5 1   0.095  3 

(4) 300 < 1⁄6 1⁄6 1⁄2 1  0.061 0.069 6 

Aspect          

(1) Flat 1     0.046  1 

(2) North 9 1    0.059  2 

(3) East 1 1⁄8 1   0.109  7 

(4) West 4 1⁄7 3 1  0.269  6 

(5) South 9 7 7 7 1 0.517 0.061 11 

Note: MWREP: Ministry of water resource for East Azerbaijan Province, MAREP: Ministry of agricultural resource for 

East Azerbaijan Province, GSDI: Geological survey department of Iran 

 

3     Methodology 
3.1    Workflow for AHP applied to LSM  

The AHP technique is one of the most commonly used 

techniques in S-MCDA and was introduced and developed by 

Saaty (1980). Empirical studies of effective applications 

provide evidence of the acceptance of the AHP for S-MCDA. 

Suppose a decision-maker considers a multi-decision-making 

problem. Where  is a set of  criteria. 

Experts should compare each pair of criteria (xi and xj) in  

(Lan et al., 2009). A value (aij) can also be derived for the 

ratio of their weightings. If the criteria xi is preferred to xj then 

aij>1 and, conversely, if xj is preferred to xi then aij<1. 

Moreover, the reciprocal property aji = ; aij>0, for j = 

1,2,…,n, i = 1,2,…,n. The resulting criteria weightings (w1, 

w2, w3,…,wn) have two conditions, namely:   and  

 

An underlying criterion ranking scale is used for pairwise 

comparisons in the AHP technique, with values from 1 for 

equal importance to 9 for extreme importance. The calculation 

of criteria weightings was broadly described by Malcezwski 

and Rinner (2016). If   is the largest eigenvalue, the 

consistency ratio (CR) of weightings calculated by AHP is 
determined as equation 1:  

                                                        (1) 

Where RI is the random index, which for n = 2, 3, 4, 5, 6, 7 

and 8, RI = 0.00, 0.52, 0.89, 1.11, 1.25, 1.35 and 1.40, 

respectively. A CR  indicates an acceptable consistency 

through the whole process of the AHP (Malczewski and 

Rinner, 2016).  Using this process, we have calculated the 

pairwise comparison matrix for the decisions of our four 

experts in this field. The CR of the whole process was 0.016, 

and the derived AHP weightings are shown in Table 2. 

3.2     Implementation of AHP-SESUA 
In this study, the MCS and variance-based global sensitivity 

analysis (GSA) were used for modelling the error propagation 

and reducing the complexity of the model respectively. The 

training landslide inventory dataset is used for this aim. 

Criteria weightings of the AHP technique are used as 

reference weightings for the MCS (see Table 2). According to 

our small training data set, the simulation was run with epoch 

of 500. The GSA quantitatively determines input variables 

that have a high impact on the outputs. Two sensitivity 

parameters were generated by GSA, these being the first-order 

sensitivity index (S) and the total effect (ST) sensitivity index. 

The S and ST parameters estimate the individual effect of each 

input variable and the total effect of a single criterion on the 

output variance, respectively (Ghorbanzadeh et al., 2017). The 

resulted ST demonstrates non-important variables. By 

considering these variables as fixed nominal values, we can 

reduce the complexity of the model (Feizizadeh and 

Kienberger, 2017). The detailed process of GSA has been 

proven and broadly described by Norton, (2015). For the 
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implementation of GSA, the significance of spatial bias in 

assessing option rank order by means of average shift in ranks 

(ASR) as equation 2: 

 

Where a_rankref  is the rank of an option in the reference 

ranking (e.g. equal weight case), and a_rank is the current 

rank of that option (Saisana et al., 2005). The weightings 

derived from the AHP technique are presented as the 

reference ranking column a in Table 2, and the results of the 

GSA are presented in columns b, c, d and e. The MCS and 

GSA were used to eliminate the uncertain criteria weights for 

LSM. According to the results of GSA, the slope, with a 

weighting of 23.2%, was identified to be the most important 

criterion of the landslide phenomenon. 

 

Table 2: Results of AHP and AHP-SESUA 

criteria AHP weights Rank S ST S % ST % Rank 

Land use  0.069 8 0.047 0.076 4.7 5.6 6 

Aspect 0.162 3 0.01 0.246 1.0 18.1 3 

Rainfall  0.071 7 -0.029 0.043 -2.9 3.2 7 

Distance 

to fault  

0.133 4 -0.053 0.227 -5.3 16.7 4 

Lithology  0.114 5 -0.022 0.175 -2.2 12.9 5 

Distance 

to stream 

0.090 6 0.01 0.006 1.0 0.5 8 

DEM  0.165 2 -0.053 0.248 -5.3 18.3 2 

Slope 0.198 1 0.512 0.315 51.2 23.2 1 

 

 

4     Results and Validation 

In order to generate LSM maps and identify the highly 

susceptible areas that threaten gas pipeline networks, the 

criteria weightings derived from both approaches were used 

for data aggregation within a GIS environment. Figures 2 (a) 

and (b) present the results of the LSM. Moreover, we 

considered a buffer of 500 meters around gas pipelines to 

identify the areas where potential landslides can affect the gas 

pipeline (Figures 3 (c) and (d)). The maps are classified into 

five classes of susceptibility using the natural breaks 

classification method. The natural breaks classification 

method applied in our study generates classes of similar 

values separated by some breakpoints. This is an effective 

technique for categorizing the susceptibility mapping results 

when we interpret pixel values close to each class boundary 

(e.g. values between ‘‘Moderate’’ and ‘‘High’’ susceptibility). 

In order to validate both resulting LSMs and identify the 

improvement in accuracy with using sensitivity analysis, a 

validation was carried out based on the known 13 landslides 

in the study area that have not used as training data. The ROC 

curve was used for validation. Based on the theory behind the 

ROC curve, the area under the curve (AUC) indicates the 

quality of a prediction model, whereby values close to 1.0 are 

considered to indicate the best results of a model. The 

calculated AUC for the LSM produced by the AHP was 89.2, 

and that of AHP-SESUA was 92.3 (Figures 3). Table 3 

presents the area of each class of landslide susceptibility 

within the generated buffer zone for gas pipeline networks.   

 

Table 3: The area of each category. 

 

Landslide 

susceptibility 

Area  Percent of area 

AHP AHP-SESUA AHP AHP-SESUA 

Very high 19.17 23.07 5.9 7.1 

High 77.01 48.09 23.7 14.8 

Medium 66.61 84.81 20.5 26.1 

Low 104.95 95.85 32.3 29.5 

Very low 60.43 73.11 18.6 22.5 
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Figure 2: Landslide susceptibility maps using (a) the AHP, (b) AHP-SESUA, (c) buffer zone of the AHP, (a) buffer zone of 

the AHP-SESUA. 
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Figures 3: Results of ROC curves for the produced LSMs. 

 

5     Conclusion and Future Work 

The main aim of this study is to evaluate the corresponding 

threat of probable future landslides for the gas pipeline 

network in Marand County. In addition to the conventional 

MCDA technique that was used for criteria weightings, the 

SESUA technique was also implemented for improving the 

accuracy of the results. Natural hazard susceptibility mapping 

is an effective approach to mitigating the adverse 

consequences they carry. The approach has often been used 

for the whole region of the case study. However, the 

evaluation of a natural hazard for a particular purpose can lead 

to more detailed results. In the presented study, we focused 

only on the areas that are a threat to gas pipeline networks. In 

this regard, a buffer of 500 meters is considered as a risk zone 

to the gas pipeline networks if a landslide occurs. The results 

indicate that landslides pose a greater threat to gas pipeline 

networks in the northern and southern regions of the County. 

Whereas, the central part of the County is a safer region for 

gas pipeline networks. It should be noted, however, that some 

parts of the central area are also prone to the other type land 

deformation, which is land subsidence. Therefore, our next 

study will consider the threat of both land deformations.  
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