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1 Introduction 

Bike sharing can contribute towards improving air quality and 

reducing congestion in cities as a part of a sustainable travel 

infrastructure (Lovelace et al., 2011). Its popularity has 

increased in the last few years globally mainly due its 

advantages in cost and convenience over owning a bike and 

other forms of transport. With the development of „Internet of 

Things‟, dockless bike sharing schemes first emerged around 

2015. Unlike traditional bike sharing schemes where bikes can 

only be borrowed and returned at docking stations, the 

dockless schemes allow users to use smartphone apps to 

locate and borrow bicycles and leave them at a large number 

of public locations in a predefined geographic area. The smart 

lock system and GPS unit on the bikes creates a large quantity 

of spatiotemporal data at the individual level to support the 

management of the scheme, which also provides new 

opportunities to reveal urban dynamics and individual non-

motorised mobility patterns.  
Bike sharing schemes are considered to enhance the 

effectiveness of public transport by providing an “extension 

service” for the “first/last mile” of journeys, for example, the 

distance between home/workplace and public transport that is 

too far to walk (Shaheen et al., 2010; Saberi et al., 2018; 

Susan et al., 2010). But very few studies in literature have 

investigated the impact of public transportation infrastructures 

on bike sharing schemes using a quantitative approach (Saberi 

et al., 2018).  

This paper aims to measure, understand, and characterise 

the interdependencies between metro and dockless bike 

sharing schemes. The case study is based on data from 

Nanchang, located in southeast China around the time when a 

new metro line came into operation. The associated changes 

in bike usage and mobility patterns are analysed using spatial 

statistics and graph theory. 

 

2 Literature Review 

This history of bike sharing can be traced back to the 1960s. 

Its development has gone through three stages (generations): 

free usage, a coin-deposit system and IT-based systems. The 

second-generation (coin deposit) first introduced docking 

stations into the scheme to prevent theft and to aid in the 

management of bike fleets. The use of docking stations also 

facilitated data collection of bike usage (Fishman, 2016, 

Shaheen et al., 2010), allowing the analysis of cycling 

mobility patterns. 

A large body of work to date has concentrated on individual 

cycling behaviour and mobility patterns in order to improve 

the management and service of schemes. For example, Vogel, 

et al. (2011) and O‟Brien et al. (2014) examined the 

geographical clustering of docking stations based on temporal 

bike usage patterns. By analysing the patterns in usage, bike 

fleet rebalancing strategies were developed and implement for 

different types of stations. Daddio (2012) presented a 

regression approach that related surrounding land-use 

characteristics with station demand, showing that commercial 

zones have a positive effect on the usage of station-based bike 

sharing. Such studies have mainly focused on demand and 

rebalancing bike provision, while the relationship, and the 

impact of events that happens between bike sharing and other 
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transportation is less quantified and discussed. Saberi et al. 

(2018) compared various spatio-temporal statistics and 

network (graph) properties of docking stations to reveal the 

impact of Tube strikes in London on bike sharing. The strike 

was shown to greatly increase the usage of bike sharing both 

in terms of the number of trips and the average distance of 

these. It was shown that there was a remarkable and long-term 

influence on the network of cycling activity. 

The studies outlined above were all generated by using data 

from the 3rd generation of bike sharing (i.e. IT-based system).  

The data used are: (1) the available bike count at each docking 

station, and (2) the flows of bike from one station to another 

(O‟Brien et al., 2014; Kaltenbrunner et al., 2010). This means 

that the analyses and inference are limited to station-based 

data and locations. 

The newly emergent and increasingly popular dockless bike 

sharing scheme provides new opportunities as well as 

challenges to non-motorised mobility studies. Because bikes 

are significantly more evenly distributed in urban spaces 

rather than only being available or having to be returned to 

docking stations. The spatiotemporal usage patterns and travel 

flows of dockless bikes are more complex to analyse 

compared with the more fixed docking station schemes. A 

new approach to studying the usage and the mobility patterns 

of the dockless schemes is wanted in order to understand 

evolving urban dynamics. Currently, dockless bike sharing 

studies are still in their infancy. Existing studies of dockless 

bike sharing are very limited and have focused on the 

management of bike fleets (Pal et al., 2017) or the planning of 

cycling infrastructures (Bao et al., 2017). There is much more 

novel research that can be done focussing on mobility pattern 

of dockless bike sharing. An important aspect of this is the 

relationship between dockless bike sharing combined with the 

use of other public transit systems.  

 

3 Study Area and Data 

Nanchang, located in southeast China, is the capital city of 

Jiangxi province. It has two metro lines as of September 

2017. The new line of 17 stations, Metro Line 2, opened and 

started running a daytime service on August 18, 2017. Figure 

1 shows the transit map of Nanchang revealing the Gan river 

running through the city, and the two metro lines (Metro Line 

2 is located on the west side of the river). 

 

Figure 1: Nanchang Transit Map. 

 

Mobike is one of the biggest dockless bike sharing 

companies in China, it operated in the Nanchang area with 

around 80,000 cycles around the time of the opening of Metro 

Line 2.  

A program was set up to collect data on the availability of 

Mobike bikes using the Mobike API. The Mobike API has in 

built limits such that a request for bike availability at a point 

location returns information (bike identifiers and coordinates) 

for the nearest 30 bikes that are available for hire. The 

program written to collect data on bike availability iterates 

through the whole urban area collecting data on bike 

availability on a raster grid of 0.0015 degrees in a longitude 

and latitude coordinate system. Most, but perhaps not all bike 

locations of available bikes across Nanchang are thus captured 

approximately every four minutes. The time taken for each 

iteration varies depended on the speed at which the Mobike 

API processed each request and communicated the results 

back to the program which waited a reasonable time before 

resending requests and making additional request so as not to 

overload Mobike with too many simultaneous requests. The 

time stamp of each result dataset was captured and the gridded 

results were aggregated into single coverages for the 

Nanchang area. 

Trips were identified by using the bike identifiers and 

examining the changes in location when these bikes became 

available. For this study, the threshold value of a trip is 100 

metres. If the change in location of a bike between two 

timestamps exceeded this threshold, then the two records are 

linked as a trip, the former one provides the origin 

coordinates, and the latter one is the destination of the trip. 

There are a number of assumptions and limitations to this 

approach of identifying trips and it is interesting to study the 

sensitivity of the results to the frequency of bike availability 

surveying and the threshold distance of 100 metres. 

Extreme weather conditions have been found to have 

significant negative effects on cycling activity (El-Assi et al., 

2017). To eliminate this potential weather influence, only data 

from rain-free days are used and in this study data from the 5 

weekdays before and the 5 weekdays after the operation of 

metro system were analysed (Weather data obtained from 

wunderground.com). 

 

4 Spatial Analysis 

The duration, start and end of Mobike trips were spatially and 

temporally heterogeneous. Figure 2 indicates the average 

number of daily trips (count based on trip origins) before the 

operation of the new metro line. Each hexagon grid cell is 

approximately 1 square kilometre. Areas with the highest trip 

density are located around the middle zones of Line 1 (Bayi 

Square) – the main central business district of Nanchang. 

After the opening of Metro Line 2, changes in the pattern of 

bike rides and ridership is evident. The service catchments 

around Metro Line 2 show increases in trip amount (Figure 3). 

Most areas experienced an increase of 40% to 120% while 

some show increases of over 120% and others over 500%. 

Figure 3 shows the spatial heterogeneity of the impact with 

areas associated with the highest increase in usage 

concentrating around the middle part of Metro Line 2. 
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Figure 2: Trip amount (Trip origins) 

 
 

 

Figure 3: Change in ridership after the introduction of line 2 

 
 

Not only did the number of trips increase, but also the 

average distances of these increased too. Each trip was located 

in buffer 1km zones around the Line 1 and Line 2 stations 

from which trip distances were calculated. The results are 

shown in Figure 4 using box plots.  

 

Figure 4: Distribution of Trip distance. 

 

Trip distance patterns in the older metro line (Line 1) areas 

are relatively consistent. The average trip distance in Line 1 

buffer area only dropped by 31m from 1,250 to 1,219m, by 

contrast, in the new line area, the mean trip distance decreased 

by 168 m from 1,166 m to 998 m. Overall, the result confirm 

that a new metro service encourages more cycling activity 

while reducing bike trip distance. 

 

5 Network Analysis 

Conceptualising urban spaces as networks with flows can 

reveal interaction between different places and how people 

move around (Batty, 2013). Previous studies of public transit 

systems normally regard stations as nodes in the graph 

structure (Saberi et al., 2018; Zhong et al., 2014). However, 

dockless bike sharing do not have typical docking stations, 

and their availability around the city at any given time can be 

more dispersed or indeed concentrated. In general, the 

chances are that the nearest bike that would be available (at 

any location) in a dockless system would be closer than that 

for a docking station system ceteris paribus. Also, with 

dockless systems, the bike trips and travel flows are more 

complex and diverse because both origin and destinations are 

far less constrained.  

In this study, small hexagonal grid cells were used to 

aggregate dockless bike trip flows. The grid covers buffer 

areas around new metro station (buffer width: 1200 m) and 

the side length of hexagon is 75m, the relatively small area of 

grid cells ensures their ability to capture the flows in study 

area. The flows from one grid cell to another are aggregated to 

build a network (graph structure), in which the grid cells are 

the nodes (vertices), and the links (edges) are the flows travel 

from one cell to another.  Graph (network) properties are then 

quantified to reveal the properties of the system. They help to 

understand the local change as well as the relationship 

between different places. Figure 5 shows the distribution of 

node degree in the two periods. The degree of a node in a 

graph is defined as the number of other nodes that linked to it. 

The average degree increased from 18.5 to 20.8. 

 

 

Figure 5： Node Degree of the two periods 

 
 

 

 Figure 6 shows the CDF (Cumulative Distribution 

Function) of node strength, with strength defined as the 

weight of links between nodes. The results suggest that in the 

“after” period, new line areas have a higher probability of 
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exhibiting stronger links. The average link strength increased 

from 32.2 to 49.4. The average centrality measure, 

betweenness centrality (Zhong et al., 2014), also increased 

from 3038.3 to 3406.8.  

Overall, the changes indicate that structure of cycling 

network becomes more centralized, and interactions between 

areas are stronger. 

 

 

Figure 6: CDF of Strength  

 
 

 

6 Discussion and Future Work 

This paper analysed the impact of new operated metro 

stations/lines on dockless bike sharing system. Important 

changes in trip amount, trip distance, as well as the graph 

structure of cycling flows were found. The new metro service 

has had significant positive impact on dockless bike sharing 

mobility patterns in a number of ways. 

Future work will focus on analysing the finer spatiotemporal 

pattern change of bike usage and the relationship between 

cycling demand, population and urban land use.  
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