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1 Introduction 

For a long time infectious disease outbreaks have inflicted 

huge socio-economic and health burdens on developing 

countries due to their weak healthcare systems. E.g., the 

United Nations Development Program (2015) estimated the 

recent Ebola outbreak in West Africa to cost each of directly 

affected countries millions of US dollars. In Uganda, one of 

African countries worst hit by HIV/AIDS, it was forecast the 

country’s economy would shrink by 39% by 2025 due to 

effects of the disease (Ministry of Finance Uganda, 2008). 

A major hindrance to fighting disease outbreaks in 

developing countries is absence/poor quality data on disease 

prevalence in populations. To address this problem some sub-

Saharan African countries setup Health Management 

Information Systems (HMIS). A HMIS is a countrywide 

integrated reporting system for collecting, transmitting, and 

storing high quality routine data on healthcare services and 

disease occurrence from a health facility level to national 

level. Data from HMIS is meant for, among other uses, 

detecting and predicting epidemics (Ministry of Health 

Uganda, 2010). Despite setting up HMIS, the problem of 

unavailability of data has persisted. E.g. Ohiri et al. (2016) 

found problem of limited malaria data in District Health 

Information Systems (DHIS) in Nigeria. Empirical analyses of 

malaria records by Andrade-Pacheco et al. (2014) and TB and 

HIV/AIDS records (this study) obtained from Uganda's HMIS 

revealed gaps due to non-reporting of case counts over spatio-

temporal dimensions. Lack of consistent reporting of disease 

case counts gives rise to inaccurate records at various levels of 

reporting with consequence that intervention planning is 

negatively impacted and hence, failure to effectively counter 

epidemics. 

There are different ways to deal with the problem of data 

unavailability on disease occurrence in a spatial region. A 

summary of such methods is found in Clements et al. (2013). 

Among them are geostatical and Bayesian methods for spatial 

data analysis and interpolation. E.g., a model-based 

geostatistical framework were used to produce high-resolution 

poverty maps by Tatem et al. (2014) and malaria risk maps by 

Hay et al. (2009). Generalized linear models and Gaussian 

process regression were used to predict malaria incidence by 

Mubangizi et al. (2014) and Bhatt et al. (2017). While these 

techniques are currently state-of-the-art, they require 

significant knowledge of statistics making them inaccessible 

to non-experts. 

In this paper a simple model is proposed for estimating 

disease case counts over a spatial region. This is done by 

spatially disaggregating case numbers at higher administrative 

units to lower administrative units based on socio-economic 

characteristics of a region. Specifically, we use poverty data 

to downscale case counts at higher administrative units to 

corresponding lower administrative units by first downscaling 

the data to grids of 100m2 and then summing per grid counts 

to provide numbers at the next higher administrative units. 

The method exploits association that is reported to exist 

between socio-economic well-being and infectious diseases in 

developing country settings. 

The rest of this paper is organized as follows, section 2 

points out some recent literature, section 3 outlines methods 

used while results are in section 4. We suggest future work in 

section 5 and conclude in section 6. 

 

 

2 Related work 

Previous studies have examined the relationship between 

living conditions and disease. E.g., Kirenga et al. (2015) 

investigated TB risk factors in adults and identified poverty as 

a leading cause, while Tusting et al. (2016) found association 

between poverty and malaria prevalence in children. Both 

studies conducted in Uganda were at level of individual 

persons, involved small study areas, and had no spatial 

dimension to their data/analysis. In the case of non-infectious 

diseases, Ludwing et al. (2012) reported link between 

neighborhood characteristics and physical/mental health. 

Using a multi-level analysis framework association is reported 

between neighborhood greenness and chronic health 

conditions (Brown et al., 2016). The latter two studies were 

conducted in the U.S.A. 
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3 Data and methods 

3.1 Datasets 

3.1.1 Poverty data 

 

The poverty dataset was downloaded from WorldPop website 

(http://www.worldpop.org.uk). It consists of predicted 

proportion of ‘poor' people per 1km2 grid for year 2015. We 

used dataset on multi-dimensional poverty index (MPI) which 

considers broad definition of well-being (Alkire & Santos, 

2010). The data in raster file format was resampled from 1km2 

to 100m2 to be consistent with other datasets used in a broader 

study. Statistics were computed on each grid to serve as 

poverty index that were then used to weight each grid (Eq. 2). 

 

3.1.2 Disease case notification 

 

The disease we use as case study is Tuberculosis (TB), a high 

burden infectious disease and a leading cause of death among 

HIV/AIDS patients in Uganda (World Health Organization, 

2017; UNAIDS, 2013). The dataset consisting of monthly 

case counts for year 2015 were acquired from HMIS, Ministry 

of Health Uganda. 

 

3.2 Methods 

3.2.1 Study area 

 

The area of study is central/northern regions of Uganda. 

Uganda lies between 10 29' South and 40 12' North latitude, 

290 34' East and 350 0' East longitude. It has population of 

34.6 million people and covers area of 241,551km2 (Uganda 

Bureau of Statistics, 2016). The spatial units of analysis we 

used are local administrative unit 1 (LAU1) (district) and 

LAU3 (subcounty). These were selected to correspond with 

disease datasets. A map of the study area is shown in Fig. 1. 

 

3.2.1 Estimating disease case numbers 

 

We used two methods to estimate case counts at LAU3 based 

on counts at LAU1. In first method we disaggregated case 

numbers at LAU1 to 100m2 grids weighted by spatial poverty 

index. The case counts for all grids situated within boundary 

of a LAU3 unit are then summed to provide predicted count 

for that LAU3. Since we did not have case counts for LAU1 

units we first calculated those by aggregating observed counts 

at LAU3 units at time t using Eq. (1), 
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                                                            (1) 

 

where yj is observed case count at a LAU3 unit and Cd is case 

number at a LAU1 unit. 

 

Each pixel's weight wi was calculated based on spatial poverty 

index v using Eq. (2), 
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Figure 1: Map of Uganda showing study area (central-

northern regions) delineated by LAU3. 

 

 

Disease case count per grid ci was then calculated based on 

grid weight was, Eq. (3), 
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The predicted count per pixel
ŷ

j for a LAU3 unit j was got 

by summing estimated case counts for all grids falling within 

boundary of that LAU3 unit as shown in Eq. (4), 
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                                                                    (4) 

 

In the second method, a baseline model is used where case 

count at a LAU1 unit is downscaled directly to LAU3 units 

weighted by grid count (Eq. 5), 

 

ŷ
j
=
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∗n

j

N
d                                                                 (5) 

 

where nj is the count of 100m2 grids in LAU3 unit j and Nd is 

total grid count in LAU1 d, respectively. 

 

The observed and predicted case numbers were normalized by 

dividing by population of each LAU3 unit to obtain per capita 

count before performing analysis. 

http://www.worldpop.org.uk/
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We evaluated the models using standard validation statistics 

including mean absolute error (MAE) to test prediction 

accuracy and Pearson correlation coefficient r for correlation 

between observed and predicted case numbers. The MAE was 

selected for its simplicity and ease of interpretation. Further 

evaluation was conducted to examine spatial non-stationarity 

using geographically weighted regression (GWR) 

(Fotheringham, Brunsdon & Charlton, 2002). Use of GWR 

also helps to address problem of 'scale effect'. 

 

 

4 Results and discussion 

 

4.1 Results 

4.1.1 Understanding the disease dataset 

 

Exploratory analysis was carried out to understand the basic 

statistical properties of our disease dataset. Summary statistics 

are provided in Table 1. 

 

Table 1: Statistical characteristics of per capita TB datasets. 

 

 

Both observed and predicted datasets exhibit non-normal 

right-skewed distribution, Fig. 2 and 3. The datasets also have 

outliers above maximum values consistent with right-skewed 

distribution, Fig. 4. A possible explanation for this pattern is 

that while majority of LAU3 units (rural units) have low per 

capita TB prevalence, a few units (urban units) have high 

prevalence. 

 

Figure 2: Histogram plot for observed per capita TB dataset 

exhibiting non-normal, skewed-right distribution. 

 

 

4.1.2 Accuracy and correlation assessment 

 

MAE and r values are shown in Table 2. The two models 

have comparable MAE and r values. Though generally low, 

the correlation seems promising given that this is a first 

version of our model without any optimization being applied. 

 

 

4.1.3 Visualizing spatial epidemic intensity 

 

Choropleth maps were created using a Geographic 

Information System (GIS) tool (QGIS version 2.18.13). As 

seen in Fig. 5, 6, and 7 our models tend to over estimate per 

capita TB across all but a handful of LAU3 units. This is 

moreso for the model based on spatial poverty distribution. 

 

Figure 3: Histogram plot for poverty-predicted per capita TB 

dataset exhibiting non-normal, skewed-right distribution. 

 

 

 

Figure 4: Box plots for per capita TB datasets. All three 

datasets exhibit similar out-lier distribution pattern. 

 

 

 

 

Table 2: Results of accuracy and correlation analyses on 

observed and predicted per capita TB. 

 

 

4.1.4 Spatial relationship analysis 

 

We used R (version 3.4.4) to run a GW regression to further  

assess the relationship between poverty and TB based on a 

Gaussian model using an adaptive kernel with bandwidth ( 

0.4150209 ) calibrated by cross-validation method. A map of 

local coefficients is shown in Fig. 8. The local coefficients 

vary from -0.015575 to 0.009121, a range within which the 

global regression coefficient (-0.010429) falls. 

 

 

 

 TB 

(observed) 

TB  

(poverty) 

TB (grid) 

Mean 0.009670 0.009838 0.010011 

Median 0.006684 0.006247 0.006403 

Mode 0.005377 0.010091 0.009810 

  

Measure TB (poverty) TB  (grid count) 

MAE 0.007893 0.007715 

Pearson r 0.275186 0.338664 

p-value 1.045727e-06 1.197466e-09 
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4.2 Discussion 

The goal of this work is to quantify effect of a socio-economic 

factor on spatial dispersal of infectious diseases. We have 

partially investigated how poverty data may be used to predict 

spatial TB distribution. The model however, over-estimates 

TB in rural areas while under-estimating it in urban areas. 

This is in contrast to current situation where TB is more 

prevalent in urban areas than in rural areas (Ministry of Health 

Uganda, 2017).  

One reason our model performs poorly could be due to fact it 

does not account for spatial heterogeneity in TB prevalence 

mentioned above. In addition, several risk factors are known 

to be associated with infectious diseases in developing 

countries. E.g., Kirenga et al. (2015) found that TB in 

Kampala is associated with several risk factors including 

HIV/AIDS, overcrowding, and alcohol use. We have not 

incorporated potential effect of these factors into our model. 

We also acknowledge other limitations of this work including 

use of small dataset and possible bias in poverty and/or 

disease datasets that we may not be aware of. The model has 

also not been evaluated on datasets spanning more than one 

year. 

 

Figure 5: Map of per capita TB (observed) by local 

administrative unit 3 (LAU3) in study area for 2015. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Map of per capita TB (poverty-based prediction) by 

local administrative unit 3 (LAU3) in study area for 2015. 

 

 

 

Although current prediction accuracy is low, we plan to build 

on these results to improve performance of our model by 

optimizing it using parameters learnt from training data. A 

potential method to address heterogeneity in spatial infection 

distribution is to apply a superlinear parameter to predicted 

case numbers in urban areas as suggested for such phenomena 

by Schlapfer et al. (2014) using Eq. (6). 

 

y
j
=α ŷ

j
β

                                                                  (6) 

 

where
y
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ŷ
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The parameter
α

is a scaling ratio while
β

accounts for 

superliner effect of population density on epidemic intensity 

in an urban area. 

Apart from the fact that our study and Brown et al. (2016) 

address different categories of diseases under different 

settings, there are other more important differences. E.g., 

while both studies use datasets aggregated at different spatial 

scales the latter study integrates all data into one multi-level 

statistical framework before analyzing it. In our case however,  

processing and analysis is performed at each level using a 

non-statistical approach. Secondly, while their study sought to 

establish a relationship between health outcomes and physical 

environment (i.e. vegetation), the aim of our study is to use 

such a relationship to predict spatial disease distribution. 
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Figure 7: Map of per capita TB (grid count-based prediction) 

by local administrative unit 3 (LAU3) in study area for 2015. 

 

 

 

 

 

 

Figure 8: Map of GWR coefficients over study area 

 

 

 

 

 

5 Future work 

A limitation of our model is treating spatial units as 'closed 

systems' that do not interact with each other with potential 

implications for epidemic. It has been demonstrated elsewhere 

that population dynamics (e.g mobility) have influence on 

spatial disease distribution. For this reason, we plan to 

integrate population mobility into our model. 

In context of developing countries, heterogeneity in socio-

economic well-being are known to occur within even small 

spatial units than what we have considered here. It might 

therefore, be unreasonable to assume uniform case 

distribution over such relatively large spatial units. To address 

this, we plan to use smaller spatial units for analysis. 

We also intend to incorporate effect of other risk factors into 

the model including access to health care, HIV/AIDS 

prevalence, and housing conditions. Accounting  for higher 

prevalence of disease in urban areas is also another research 

direction we intend to pursue. 

 

 

6 Conclusion 

We report early results of an attempt to use poverty data to 

estimate infectious disease numbers over smaller spatial units 

by disaggregating numbers at larger units. This being a first, 

un-optimized version of our model the prediction accuracy is 

still low which we plan to build on. 
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