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1 Introduction 

Cellular automata (CA) are examples of mathematical systems 

constructed from many identical components, each simple, but 

together capable of complex behaviour (S Wolfram, 1984). 

CA adopt a bottom-up approach, through which local 

individual behaviors can give rise to complex global patterns 

(Liu et al., 2008). Because of the simplicity, flexibility and 

intuitiveness of CA (Santé et al. 2010), a series of CA-based 

models were proposed (Batty, 1997; Clarke et al., 1997; 

Torrens and O'Sullivan, 2001; Verburg et al., 2004; Almeida 

et al., 2008). These studies have demonstrated the advantages 

of CA-based models for simulating complex geographical 

processes. 

The core of CA is how to define the transition rules, which 

determine the state conversion of geographical processes (Liu 

et al., 2008a). With many spatial variables and parameters 

involved, it’s difficult to obtain appropriate transition rules. 

Varies of methods were proposed to describe the transition 

rules of CA for different research areas or objects. Traditional 

methods, like multi-criteria evaluation (Wu and Webster, 

1998) and SLEUTH model (Silva et al, 2002), are simple and 

their mechanism are clear. However, with a large set of 

variables, it is not efficient and reliable because the 

determination of parameters has certain subjectivity and 

randomness. And a major drawback of equation-based models 

is that they have difficulties in tackling a series of complex 

behaviors associated with natural systems. To overcome this 

problem, a series of machine-learning methods were 

proposed, such as logistic regression (Wu, 2002), artificial 

neural networks (Li and Yeh, 2002), support vector machines 

(Yang et al, 2008). Furthermore, artificial intelligence 

algorithms were put forward for explicitly obtain the 

transition rules of CA, like data mining approaches (Li and 

Yeh, 2004), genetic algorithm (Jenerette and Wu, 2001), ant 

colony optimization (Yang et al, 2012), etc. The methods 

above show a significant improvement in obtaining nonlinear 

transition rules for CA, but there still remains many problems 

like over-fitting, resulting in local optimization or difficult to 

interpret the inference process. Moreover, the geographical 

simulation of large-scale regions with fine resolution units has 

become an inevitable trend (He et al, 2013), which further 

makes the implementation of fast CA simulations difficult in 

traditional methods. 

Recently, deep learning has become the dominant technique 

to learning more information from multivariable nonlinear 

systems. A deep architecture consists of feature detector units 

arranged in multiple layers: lower layers detect simple 

features and feed into higher layers, which in turn detect more 

complex features (Ji et al, 2014). DBN is a multilayer 

generative neural network along with a greedy layer-wise 

learning algorithm, and it has been successfully implemented 

in dimensionality reduction (Hinton, 2006), time series 

forecasting (Chao, 2011) and digit recognition (Bengio, 

2007).  
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Cellular automata (CA) has been widely used to simulate complex geographical processes. The core of a CA model is 

defining appropriate transition rules to constructing nonlinear relationship between spatial variables and geographical 

structure. This paper presents an intelligent approach to discover transition rules for CA model by using deep belief network 

(DBN). DBN is a novel neural network model which is composed of some stacks of restricted boltzmann machines. The 

nonlinear features and structures of land use structure from training data which determines transition rules in CA model is 

extracted by a layer-by-layer unsupervised pre-training and a supervised back-propagation fine-tuning procedure in DBN. A 

case study simulating the multiple land use changes in the BEIJING-TIANJIN-HEBEI region demonstrates that the proposed 

model can achieve high accuracy and overcome some limitations of existing CA models. 
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In this paper, we will explore the practicability and efficient 

of implementing deep belief network (DBN) to discover 

transitions rules of CA. And this proposed model was tested 

using regional land use changes data from BEIJING-

TIANJIN-HEBEI (BTH) region, China, for the period 2005-

2015.  

 

 

2 Methodology 

2.1 Deep belief network 

Deep belief network (DBN) is probabilistic generative model 

and a feedforward neural network. A typical DBN architecture 

contain an unsupervised learning subpart by using restricted 

Boltzmann machines (RBMs) which is trained in a greedy 

manner and followed with a supervised fine-tuning subpart 

like back-propagation in the top-level for prediction (see 

Figure 1). 

 

Figure 1: The architecture of DBN 
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As the basic component of DBN, restricted boltzmann 

machine (RBM) is a stochastic neural network and an energy 

based model in essence. In an RBM, there are only 2 layers 

so-called input layer (or visible layer) of   dimension 

representing observable data and output layer (or hidden layer) 

of   dimension representing detected features from observable 

data. The connection of RBM’s units is restricted to different 

layers and there are no connections within a layer (see Figure 

2).  

The weight matrix               encode a statistical 

relationship by the conditional distribution        and        
between the visible and the hidden layer, which can be 

mathematically described as equations (1) and (2):  

        
      

    
 (1) 

        
      

    
 (2) 

where   is the visible vector and   is the hidden vector. And 

the joint distribution         and        is calculated by 

energy function as equation (3):  

               
        

∑         
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The energy function        of certain configuration can be 

defined as equation (4):  

        ∑     
  
   

∑     
  
   

∑ ∑         
  
   

  
      (4) 

where      are the offsets of the visible and hidden layer 

respectively).  

 

 

Figure 2: Restricted boltzmann machine 
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The training process of DBN which can be divided into two 

main stages is as follow (Qin et al, 2017): 

 Unsupervised pre-train stage 

Step 1: Initialize weights   with normal distribution. For 

each input data      [   ]     . 

Step 2: Compute the probability of hidden units       . 

Step 3: Compute the probability of reconstructed visible units 

      . 

Step 4: Obtain the reconstruction error   . 

Step 5: Update the weights  , and calculate the energy 

function       . 
Step 6: Repeat Step 2~Step 5 until the energy function        
decreases to be a convergent state. 
 Supervised fine-tuning stage 

After an unsupervised pre-train stage, all the parameters are 

required to be slightly adjusted in supervised manner until the 

loss function of DBN reaches its minimum (Wang et al, 2016). 

In this paper, back-propagation (BP) is periodically works in 

the top-level RBM during the supervised fine-tuning stage.  

 

 

2.2 DBN-based CA model for simulating multiple 

land use changes 

When using CA model to simulating multiple land use 

changes, the transition rule that determines what land use type 

of cell will be in the predict time-point can be highly 

complicated (see Figure 3).  
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Figure 3: Complex relationships of land use conversion 
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It consists of two parts (see Figure 4): discovery of transition 

rules based on DBN from train data and simulation of 

multiple land use changes based on the well-trained model. 

 

 

Figure 4: The flowchart of DBN-CA model  
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The first part of the DBN-based CA model is to train DBN 

for discovering transition rules from land use data and GIS-

based spatial variables. The simulation is cell-based and each 

cell is composed of a set of attributes as the inputs to the DBN 

after covert them into the range of [0,1] (Gong, 1996). The 

attributes during discover transition rules of multiple land use 

change are shown in Table 1. And They can be expressed by: 

   [              ]
  (5) 

where    is the  th attribute and   is transposition. 

Accordingly, each cell has its own status which is land use 

types that can be expressed by: 

   [              ]
  (6) 

where    is the  th status and   is transposition. Then use 

inputs and outputs train the DBN, and save it as the well-

trained model when the literation is done. 

The second part is to simulate (or predict) the process of 

multiple land use change by applying the well-trained model. 

The inputs are land use data and GIS-based spatial variables 

in the initial stage, and the outputs are the land use type of 

each cell in final stage. 

3 Implementation and results 

3.1 Study area 

The BTH region (36°05′ N~42°37′ N and 113°11′

E~119°45′E ) is located in the northern North China Plain 

and includes two centrally directly-controlled municipalities 

(Beijing and Tianjin) and Hebei Province. The total terrestrial 

area of the region is about 0.22 million km2 (see Figure 5). It 

is the biggest urbanized region in Northern China. With a 

rapid urbanization and economic development, its land use 

structure has experienced, and will continue to experience 

dramatic changes. 

 

3.2 Data preprocessing 

The spatial data selected for this simulation consisted of land 

use datasets and GIS-based data (Table 1). TM satellite 

images are used to investigate the actual land use structure 

and its neighbor conditions. The cell size of         is 

adopted for implementation. A series of spatial variables 

include various distance-based variables and physical 

properties (White and Engelen, 1993) were chosen for the 

simulation from GIS-based data.  

 

3.3 Experimental design 

The major purpose of this implementation is to evaluate the 

performance of DBN-CA model in simulating multiple land 

use changes. In this paper, the parameters in Table 2 are set to 

run the DBN. Cells converted into cropland, woodland, 

grassland, water body, build up and others are marked as 1, 2, 

3, 4, 5, 6 respectively.  

The spatial data in 2005 and 2010 are treated as the training 

dataset, which are used to train the model for deriving the 

transition rules, and the spatial data in 2015 are used to 

confirm the predictability of the well-trained DBN-CA model. 

 

3.4 Model validation and comparison 

The simulated results for years 2015 are validated by 

comparing them with the actual land use structure on cell-by-

cell which is derived from the TM data. The visual 

comparison indicates that the simulated structures are in good 

accordance with the actual ones (see Figure 6).  

It is further validated by comparing with Logistic Regression 

based CA (LR-CA) in the same dataset. The simulation results 

of these different scenarios are shown in Figure 7. The 

confusion matrix, the overall accuracy and the kappa 

coefficients of the cell-by-cell comparison (Congalton 1991) 

with the simulation results of DBN-CA and LR-CA are given 

in Table 3 and Table 4. As shown in Tables 2 and 3, the 

overall accuracy of the DBN-CA model is 1.48% higher than 

that of the LR-CA model, and the kappa coefficient is 1.9% 

higher than that of the LR-CA model. The comparison with 

LR-CA model indicates that the DBN-CA model is more 

accurate in the simulation of multiple land use changes. 
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Figure 5: Geographical position of the BTH region 

 
 

 

4 Conclusion 

CA models have been widely used in simulating geographical 

processes. With a large set of spatial variables and complex 

relationship, the traditional methods are insufficient for 

calibrating their parameters and interpret their meaning for a 

large complicate region. This paper presents a novel neural 

network model, deep belief network, for discovering the 

nonlinear relationship between spatial variables and 

geographical processes. 

The proposed DBN-CA model is applied to simulating 

multiple land use changes in BTH region, China. Simulation 

results have been quantitatively evaluated by confusion matrix, 

overall accuracy, and kappa coefficient. And it also achieved a 

considerably higher overall accuracy and kappa coefficient 

when compared with LR-CA. The results indicate that the CA 

model based on DBN is a suitable tool for simulating multiple 

land use changes. 
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Table 3: Confusion matrix between actual and simulated land use structure based on DBN-CA  

 
Actual cropland Actual woodland Actual grassland Actual water body Actual build up  Actual others 

Simulation cropland 89.18% 0.88% 0.71% 0.49% 8.69% 0.05% 

Simulation woodland 1.34% 94.94% 2.27% 0.13% 1.30% 0.02% 

Simulation grassland 3.48% 3.49% 89.40% 0.27% 2.69% 0.66% 

Simulation water body 15.48% 2.05% 1.18% 67.62% 12.38% 1.29% 

Simulation build up 14.31% 0.29% 0.39% 3.23% 81.70% 0.08% 

Simulation others 29.60% 2.74% 16.31% 2.49% 4.80% 44.05% 

Overall accuracy 88.32% 

Kappa coefficient 0.829 

 

Table 4: Confusion matrix between actual and simulated land use structure based on LR-CA 

 

Actual cropland Actual woodland Actual grassland Actual water body Actual build up  Actual others 

Simulation cropland 88.41% 0.55% 1.14% 0.93% 8.40% 0.56% 

Simulation woodland 2.07% 94.38% 2.73% 0.28% 0.41% 0.12% 

Simulation grassland 2.24% 2.95% 93.02% 0.22% 0.61% 0.97% 

Simulation water body 8.85% 1.01% 1.67% 75.82% 11.77% 0.88% 

Simulation build up 27.81% 1.91% 2.75% 2.93% 64.27% 0.33% 

Simulation others 3.91% 0.61% 18.07% 6.87% 1.89% 68.65% 

Overall accuracy 86.84% 

Kappa coefficient 0.810 

 

Table 1: Input and output of DBN 
X(inputs)  Y(output)  

x1 Land use type of the cell y1 Cropland 

x2 Cell number of cropland in neighborhood   

x3 Cell number of woodland in neighborhood y2 Woodland 

x4 Cell number of grassland in neighborhood   

x5 Cell number of water body in neighborhood y3 Grassland 

x6 Cell number of build-up in neighborhood   

x7 Cell number of unused land in neighborhood y4 Water body 

x8 Distance to city centre   

x9 Distance to main road y5 Build up 

x10 Distance to rivers   

x11 Distance to towns y6 Others 

x12 Distance to railways   

x13 Slope   

 

  

Table 2: Parameters used in the DBN 
Description Symbol Quantity 

Dimension of the input of the DBN n_ins 7 
Dimension of the output of the DBN n_outs [10, 8, 6] 

Intermediate layer size, must contain at least one value hidden_layers_sizes 6 

Number of epoch to do pretraining pretraining_epochs 0.1 
Maximal number of iterations of run the optimizer training_epochs 0.01 

Learning rate to be used during pre-training pretrain_lr 10 

Learning rate used in the finetune stage finetune_lr 100 
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Figure 7: Comparison between DBN-CA and LR-CA  

 
(a) DBN-CA 

 
(b) LR-CA 

 

Figure 6: Simulated and actual multiple land use changes of BTH region in 2015. 
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(b) actual 

 


