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1 Introduction 

Mapping cropland from remote-sensing (RS) images is an 

effective measure to protecting cropland in the rapidly 

urbanized era in China. Recent technologies have significantly 

increased the resolution of available RS images (2m spatial 

resolution and higher), which provides the necessary detail to 

observe smallholder agriculture. Nonetheless, it also brings 

challenges to RS community in smart image interpretation for 

cropland. There is a vast literature on setting the thresholds to 

map cropland automatically, but the approaches usually 

consider the spectrum of every individual pixel to assign it to 

a certain class. Alternatively, more advanced techniques 

combine information from a few neighboring pixels to 

enhance the mapping performance, often referred to as 

spectral-spatial classification. These approaches rely on the 

separability of the different classes based on the spectrum of a 

single pixel or of some neighboring pixels. However, 

smallholder agricultural fields are small and irregularly 

shaped, and all these methods only consider the spectral 

features of the pixel and its neighborhoods. So we argue that a 

more thorough understanding of the context, such as the shape 

of objects, is required to aid the mapping process. 

Therefore, Convolutional neural networks (CNN) (Lecun, 

Bottou, Bengio, & Haffner, 1998) are gaining attention due to 

their capability to automatically discover relevant contextual 

features in classification problems. CNNs consist of a stack of 

learned convolution filters that extract hierarchical contextual 

image features, and are a popular form of deep learning 

networks. They have already outperformed other approaches 

in various domains, such as digit recognition (Schmidhuber, 

Meier, & Ciresan, 2012) and natural image categorization 

(Krizhevsky, Sutskever, & Hinton, 2012). 

Among different CNN models, SegNet is designed to be an 

efficient architecture for pixel-wise semantic segmentation 

(Badrinarayanan, Kendall, & Cipolla, 2017). In this study, we 

utilize SegNet architecture since it provides a good balance 

between accuracy and computational costs. Moreover, an 

overlapped sampling method is proposed to expand the 

training dataset. Using SegNet and overlapped sampling, this 

study develops a methodology to finish pixel-wise semantic 

segmentation and map the cropland from RS images 

automatically. 

 

 

1.1 Related Work 

In this section, we review mapping cropland methods and the 

use of CNNs in semantic segmentation of RS data.  
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Abstract 

China’s rapid urbanization entails increasing importance of cropland protection, and automatic mapping through information extraction 
from high resolution remote-sensing (RS) images is a powerful tool towards this goal. RS images information extraction pertains the 

feature classification, which is a long-standing research issue in the RS community. The emerging deep learning technique, which is an 

effective method to automatically discover relevant contextual features, is a promising means for better image classification. In this study, 
we exploit the deep learning technique to classify and extract cropland in high resolution RS images. Specifically, we use the deep learning 

framework Caffe to construct a platform for sampling, training, testing and classifying to extract and map cropland based on SegNet. 

Leveraging the overlapped sampling technique proposed in this paper, we obtain more training samples with limited labeled data and 
achieve better training results. The results manifest that the proposed approach can efficiently obtain acceptable accuracy (OA = 0.98, 

Kappa = 0.93) in the study of cropland classification of the study area, and the approach performs better in urban areas where trees or bush 

could easily be misclassified as cropland. Furthermore, the proposed approach is highly scalable for the variety of crop types in cropland. 
Overall, the proposed approach can train a precise and effective model that is capable of adequately describing the small, irregular fields of 

smallholder agriculture and handling the great level of detail in high-resolution image. 
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Before the emergence of deep networks, the best performing 

methods for mapping cropland mostly relied on hand 

engineered features classifying pixels independently. 

Typically, a patch is fed into a classifier e.g. Support Vector 

Machine (Yang, Everitt, & Murden, 2011), decision 

tree(Otukei & Blaschke, 2010; Xiong et al., 2017) or artificial 

neural network (Tseng, Chen, Hwang, & Shen, 2008) to 

predict the class probabilities of the center pixel. However, 

these methods need to set thresholds and feature design 

artificially. Besides, they are often influenced by the mixed 

pixel problem (Nagendra & Rocchini, 2008) and limited to 

spectral features, lacking a more thorough understanding of 

the context, which inspired us to use CNNs to overcome the 

problem. 

CNNs, which learn the representative and discriminative 

features in a hierarchical manner from the data, have recently 

become a hot research topic in the machine-learning area and 

have been introduced into the geoscience and RS community 

for RS classifications (Zhang, Zhang, & Du, 2016). Zhou et 

al. (2017) employed CNN architecture as a deep feature 

extractor for high-resolution RS image retrieval (HRRSIR). 

Lagkvist et al. (2016) presented a novel RS imagery 

classification method based on CNNs for five classes 

(vegetation, ground, road, building, and water), which 

outperformed the existing classification approaches in the 

classification accuracy. Wang et al. (2015) used a CNN 

structure with three layers and Finite State Machine (FSM) for 

road network extraction for long-term path planning. Different 

network architectures, which are widely used in the field of 

computer science, are also compared when they are used in 

semantic segmentation of RS data (Scott, England, Starms, 

Marcum, & Davis, 2017). To accelerate the training stage, 

large pre-trained neural networks (Marmanis, Datcu, Esch, & 

Stilla, 2016) have been investigated for classifying RS images 

into a large set of diverse land-use classes, and have achieved 

promising results, significantly increasing the best stated 

performance through a simple and computationally efficient 

end-to-end approach. 

 

 

1.2 Contributions 

Our contributions in this work lie on the use of SegNet for RS 

images cropland mapping, where we show that SegNet 

classifiers can be profoundly suitable for our mapping task. 

To the best of our knowledge, this is the first time to apply 

SegNet into cropland classification. Furthermore, in the 

training stage we propose an overlapped sampling method to 

get more training samples with limited labeled data. This 

produces better performances in classification accuracies 

compared with other methods, especially when there are 

different crop types in crop fields. Moreover, the approach 

shows its superiority in urban areas where trees or bush can 

easily be misclassified as cropland. 

 

 

 

2 Proposed Method 

Alike other supervised classification, our approach generally 

has two stages (Figure 1): the training stage and the 

classification stage. In the training stage, image-label pairs, 

with pixel-class correspondence, are input into the SegNet 

network as training samples. The error between predicted 

class labels and ground truth (GT) labels is calculated and 

back-propagated through the network using the chain rule, and 

then the parameters of the SegNet network are updated using 

the gradient descent method. In the classification stage, the 

trained SegNet network is performed on an input image to 

generate a class prediction. The details of the training stage 

and classification stage are presented in Sections2.2 and 2.3, 

respectively. 

 

Figure 1: The general pipeline of our approach. 

 
 

 

2.1 Network Architecture 

A number of network architectures for semantic segmentation 

have been proposed in the last few years, e.g., FCN (Long, 

Shelhamer, & Darrell, 2015), DeepLab (Chen, Papandreou, 

Kokkinos, Murphy, & Yuille, 2017). In this study, we choose 

the SegNet architecture (Figure 2), which is designed to be an 

efficient architecture for pixel-wise semantic segmentation. It 

is primarily motivated by road scene understanding 

applications which require the capabilities of modelling 

appearance, shape and understanding the spatial-relationship 

(context) between different classes. At the same time, it 

provides a good balance between accuracy and computational 

cost. Moreover, SegNet's symmetrical architecture and its use 

of the pooling/upsampling combination is very effective for 

precise re-localisation of features, which is intuitively crucial 

for RS data. 

 

Figure 2: SegNet Architecture 

 
 

 

2.2 Network Training 

Unlike the traditional computer vision images, RS images 

often have larger coverage and size, which makes it difficult 

to be trained as a whole. Therefore, before training, we need 

to split the labeled RS images into small parts. As RS images 

labeled with ground truth are limited, we propose an 
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overlapped sampling method (Figure 4) rather than the 

general sampling procedure (Figure 3) to expand the training 

dataset. The motivation for this approach is as follows: image 

augmentation, such as random rotation, shifts, shear, flips, and 

so forth, is usually applied to boost the performance of deep 

networks. For RS images, taking advantage of the idea of shift 

and shear for image augmentation, it is convenient to get more 

samples by overlapped sampling on an integral image. The 

expanded training dataset, which is organized by Image-

Ground truth (GT) label pairs, is then input into SegNet as 

training samples. The Softmax function is performed on the 

output feature map generated by the network to predict the 

class distribution. Then the softmax loss is calculated and 

back-propagated, and finally the network parameters are 

updated using Stochastic Gradient Descent (SGD) with 

momentum. 

 

Figure 3: General Sampling Procedure (Here we take RS 

images as an example, GT-labels’ sampling method is the 

same.) 

 
 

Figure 4: Overlapped Sampling Method (Here we take RS 

images as an example, GT-labels’ sampling method is the 

same.) 

 
 

 

2.3 Classification Using the Trained Network 

High resolution RS images are often too large to be processed 

in only one pass through a CNN. Given current GPU memory 

limitations, we split our images into small patches with a 

simple sliding window. It is then possible to process arbitrary 

large images in a linear time. For the overlapped part of the 

image predicted, we average the multiple predictions to obtain 

the final classification for overlapping pixels. This smoothes 

the predictions along the borders of each patch and removes 

potential discontinuities. 

 

 

 

3 Experiments 

3.1 Experimental Setup 

Our training dataset is collected from WorldView-1 (true 

color fusion images with 0.5 meter resolution) of Fengnan, 

Hebei, China. The images were taken on 20 July 2011. The 

reason of choosing images obtained in July is that the crop is 

in its growing season, which makes it easier to extract crop 

fields from other sorts of land cover via semantic 

segmentation. We manually labeled two slices (the size of 

both is 4341 * 3669) of the whole image at the pixel level as 

GT label data. One of the two slices is used for sampling, and 

the other for deploying. In our training dataset, there are a 

total of 203,000 pairs of samples (size 128 * 128). So for each 

pixel in RS images, there exists a pixel-class correspondence 

with it. We used 200,000 images for training, and the 

remaining 3,000 images for testing. A “step” policy is used 

for learning rate adjustment (gamma = 0.1, step_size = 20, 

000). The max iteration in our training is 200,000. In the 

training procedure, we feed the samples into the network in 

batches, and each batch contains 10 images. In addition, we 

use the deep learning framework Caffe to construct a platform 

for all the work including sampling, training, testing and 

classifying to extract and map cropland. 

Accuracy assessment is based on the pixel-based 

classification evaluation method. By obtaining the final 

mapping result and calculating the confusion matrix, we can 

obtain the overall accuracy (OA), kappa coefficient and F1-

Score for each class. Additionally, for comparison with the 

proposed method, we use three different methods, i.e., 

artificial neural networks (ANN), fully convolutional 

networks (FCN) (Mnih, 2013) with overlapped samples, 

SegNet without overlapped samples, trained with the same 

training samples to map crop fields. 

 

 

3.2 Results 

We adopt our trained model on the other slice of the high 

resolution RS images for the classification. The image is the 

testing image that is not involved in training. Figure 5 is the 

illustration of the results and the comparison. 

We employ overall accuracy, F1-Score, and Kappa 

coefficient as the indicators to evaluate our approach. These 

indexes are calculated from the confusion matrix C, where the 

overall accuracy is calculated as 

∑      ∑ ∑                                      (1) 

where i, j represent the row and column number of the 

confusion matrix, respectively. Overall accuracy denotes the 

proportion of the pixels that are correctly classified, and the 

F1-Score is computed as 

     
                

                
                          (2) 

where precision is the number of correct positive results 

divided by the number of all positive results returned by the 

classifier, and recall is the number of correct positive results 

divided by the number of all relevant samples, that represents 

the harmonic average of the precision and recall, and the 

Kappa coefficient measures the consistency of the predicted 

classes with the GT classes. The comparisons between our 

approach and other three methods are listed in Table1. 
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Table 1: Comparison between approaches using artificial neural networks, FCN, SegNet without overlapped samples, and our 

approach. 

Index ANN FCN 
SegNet without 

Overlapped Samples 
Our Approach 

Overall Accuracy 87.73% 73.57% 74.83% 97.85% 

F1-Score (Cropland) 0.93 0.83 0.82 0.99 

F1-Score (Non-Cropland) 0.57 0.44 0.55 0.94 

Kappa Coefficient 0.50 0.28 0.41 0.93 

 

 

Figure 5: Classification result where cropland is red and non-cropland is black. (a) Original images; (b) GT labels 

corresponding to the images in (a); (c–e) Results of the artificial neural networks classification, FCN with overlapped samples, 

and SegNet without overlapped samples corresponding to the images in (a), respectively; (f) Our classification results 

corresponding to the images in (a). 

    
(a)                                                                       (b) 

    
                                                              (c)                                                                         (d) 
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(e)                                                                          (f)

3.3 Analysis 

The statistics in Table 1 show our approach obtains the best 

performance compared with the others. Approaches using 

FCN and SegNet without overlapped samples achieve similar 

overall accuracy, and the ANN approach performs better than 

those two. 

For ANN approach, Figure 6 shows that the result is not 

satisfactory in urban areas where trees or bush could easily be 

misclassified as cropland. And for FCN approach, serious 

reduction of the resolution is result from pooling operations. 

The output has lost many valuable detail information. When 

using SegNet without overlapped samples, the F1-Score for 

“non-cropland” is 0.44. That means more than half of the 

pixels are wrongly classified. It is easy to see in the Figure 7 

that the low accuracy is caused by different crop types in crop 

fields. Compared with other approaches, our approach, which 

takes advantage of SegNet and overlapped sampling in the 

training stage, outperforms them in terms of accurateness, 

detail preserving and scalability. Therefore, the classification 

accuracy is highly improved. 

 

Figure 6: Result produced by ANN. Yellow squares in the 

figure mark out the apparent mistakes. 

  
 

Figure 7: Result produced by SegNet without overlapped 

sampling. 

  
 

 

 

 

 

4 Conclusion and Future Work 

In this paper, we have proposed an overlapped sampling 

method, and utilized SegNet for mapping cropland in RS 

images. Through our proposed framework, we have achieved 

promising results using a simple and computationally efficient 

end-to-end approach. 

In our future research, we will study the classification in a 

more detailed way, e.g., classification of land cover or crop 

types. Moreover, we will also investigate the potential of deep 

networks on a larger scale experiment, incorporating satellite 

data with greater spectral resolution and geographical 

variations. 
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