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1 Introduction and background 

Spatial analysis techniques like hot-spot estimators, spatial 

autocorrelation measures and spatial regression models (Getis 

2008) are applied to investigate the interaction behaviour 

within spatial random variables (Fischer 2010). One important 

assumption when using these techniques is the notion of 

stationarity, describing different forms of homogeneity with 

varying degrees of intensity (Zimmermann & Stein 2010). 

Spatial autocorrelation techniques like Moran‟s I are based on 

second-order (or weak) stationarity (Cliff & Ord 1981, 

Aldstadt 2010) which imply constant means and variances. 

This assumption is important to assure the validity of 

auxiliary parameters and to simplify randomisation 

procedures for constructing null models. 

Many recent user-generated and ambient datasets like those 

extracted from Twitter infringe traditional stationarity 

conditions. These kinds of data are obtained from 

unmoderated acquisition schemes that allow users to choose 

freely the locations, moments of sending, and contents of their 

posts. This leads to a noisy dataset featuring few observations 

about many simultaneous phenomena (Lovelace et al. 2016). 

Further ambiguity is added by the idiosyncratic spatial 

perceptions of the users (Wender et al. 2003) and by 

demographic characteristics like age or gender (Weiss et al. 

2003, Sugovic & Witt 2013). The resulting non-identical 

random variables are thus spatially and temporally mixed, 

because not all of these complex differences can be sorted out 

a priori. Using these data in the vein of the humans-as-sensors 

concept (Goodchild 2007) thus requires a treatment of their 

inherent heterogeneity, affecting stationarity assumptions. 

This paper examines the influence of varying statistical 

parameter values within co-located but non-identical random 

variables on the spatial autocorrelation measure Moran‟s I. 

Related work has been carried out recently by Westerholt et 

al. (2015, 2016), who investigated superimposed scale 

characteristics and the effect of inappropriately positioned but 

highly cross-linked observations on spatial analysis results. 

By analogy, it was shown in earlier works that Moran‟s I 

requires a minimum degree of variability within the analysed 

attributes (Walter 1992), whereas variability in the 

connectivity degrees of the random variables is a major 

nuisance affecting the validity of analysis results (Tiefelsdorf 

& Boots 1997, Tiefelsdorf et al. 1999). It was further found 

that unstable variance (“heteroscedasticity”) leads to 

problematic randomizations and thus to wrong inferences 

(Oden 1995, Waldhör 1996, Assuncao & Reis 1999). Griffith 

(2010) recently investigated effects of attribute value 

deviations from normality, which is a prerequisite for a 

sufficiently fast convergence of Moran‟s I to a normal 

distribution. He conjectured that deviations are unproblematic 

as long as the distribution of the data resembles a bell curve, 

or is at least symmetric in shape. Most outlined results have 

been achieved under the premise of spatially disjoint random 

variables. This paper supplements these findings with the case 

of varying means and variances under the assumption of 

spatially superimposed random variables. 

The presented work analyses a range of possible 

simultaneous mean-variance combinations resembling 
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Abstract 

Ambient user-generated geo-information like that from geosocial media is collected using liberal, unmoderated acquisition modes. 
This offers a high degree of freedom regarding content. However, the collected information is influenced by idiosyncratic spatial 

perceptions. The resulting datasets are thus heterogeneous and comprise different (often inseparable), spatially and temporally 
superimposed statistical populations. Traditional notions of stationarity, which are oftentimes required in spatial analysis, are therefore 

frequently violated and conclusions about disclosed spatial structures might be misleading. This paper examines how the spatial 

superimposition of statistical populations influences the spatial autocorrelation estimator Moran‟s I. The approach chosen allows to gain 
insights beyond specific empirical datasets and with full flexibility in parameterization. A synthetic point pattern is therefore 

constructed, which contains two overlapping, differently scaled sub-patterns. Normally distributed values drawn from populations with 

different means and variances are repeatedly assigned to these, and Moran‟s I is calculated for 20,000 overall configurations. Each 
parameter value thereby corresponds to a multiple of the same parameter value of the other population. The results show strong 

influences of discrepancies in statistical parameter values of co-located populations on the characterization of spatial patterns. While 

differences in mean values change the magnitude of Moran‟s I, whereas differences in variances increase the range of the measure. The 
scale associated with the dominant of the involved populations further influences the magnitude of Moran‟s I. These results suggest that 

the spatial analysis of ambient user-generated geo-information from unmoderated acquisition modes may require the consideration of 

different superimposed statistical populations to ensure meaningful results. 
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different kinds of overlapping but eventually indistinguishable 

phenomena. One-thousand synthetic points are generated 

mimicking two hypothetic processes, each of which is 

operating at a specific interaction scale. These are then 

populated with normal attributes based on the mean-variance 

combinations between the two sub-patterns. Two populations 

are thus involved in each studied case, one for the larger-

scale, and another for the smaller-scale one of the overlapping 

processes. In addition, these cases are studied under the 

premises that (i) both involved sub-patterns are themselves 

spatially uncorrelated or (ii) that both patterns are spatially 

structured. Indications are given for systematic behaviours in 

these combinations. Further, influences of the differing means 

and variances on the magnitude and range of Moran‟s I are 

revealed. The achieved insights facilitate a better 

understanding of spatial analysis results obtained from 

geosocial media and related data. 

 

 

2 Methods 

2.1 Pattern construction 

Synthetic data is used to have full control over parameters and 

to achieve interpretable results. The geometric setup of two 

overlapping point patterns is generated by placing an initial 

random point first. Additional 500 points are added iteratively 

and conditional on the respective preceding point by drawing 

random directions and distances from uniform distributions. 

The continuous uniform distributions used for drawing 

directions and distances on two interaction scales are given by 

(0, 360), and 𝒰(40, 50) (“small-scale”) or 𝒰(70, 80) (“large-

scale”). A second pattern that was created in the same way is 

then moved so that it overlaps about 25 % of the first pattern. 

The generated synthetic point locations are assigned normal 

attribute values from two different populations, which are 

randomly assigned for spatially uncorrelated cases (Figure 

1a). In contrast, the values are ordered ascendingly first, 

before they are allocated to the points in a radial manner when 

patterns are spatially structured (Figure 1b). In the interior 

there are lower values, which increase towards the edges of 

the respective sub-pattern. The outline of the actual means and 

standard deviations used is found in Section 2.3. 

 

 

2.2 Moran’s I 

The estimator studied, Moran‟s I, is a measure of spatial 

autocorrelation. It measures the degree of correspondence 

between structures in geographic space and those found in an 

attribute. It reads as (Cliff & Ord 1981, Getis 2010) 
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where         represent   attribute values with mean  ̅ 

indexed over spatial units *  +. The     denote pairwise 

positive spatial weights. Moran‟s I is the most frequently used 

estimator of spatial autocorrelation. It is typically preferred 

over alternative measures like Geary‟s c for its superior power 

characteristics and because it is less prone to statistical and 

configurational outliers (Chun & Griffith 2013). The applied 

spatial weights have a distance cut-off at 80 distance units (the 

upper bound of the large-scale interaction) and follow an 

inverse distance weighting scheme given by 
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This scheme is chosen for resembling the distance-based rules 

that are used for constructing the patterns (see Section 2.1). 

 

 

Figure 1. Illustration of the investigated overlapping patterns 

for μ1 = 250, μ2 = 750, σ1 = σ2 = 1. (a) Spatially random 

patterns, (b) spatially autocorrelated patterns. 

 

 
 

2.3 Heat maps of I with differing configurations 

Moran‟s I is estimated from 20.000 different random 

statistical configurations on the overlapping point pattern. 

Two heat maps are generated from these: one for the case of 

uncorrelated attributes (Figure 1a) and another map for the 

spatially-structured sub-patterns (Figure 1b). Each grid cell in 

these heat maps represents Moran‟s I for a specific statistical 

configuration between the two sub-patterns. This makes it 

possible to examine the role of the relationship of different 

means and variances of a process to multiples of the same 

values on the other simultaneous process. The heat maps are 
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centred, meaning that the mean and variance for both 

processes are the same (1:1) in the central grid cell. A ratio of, 

for instance, 1:3 in the left x-direction then means that the 

mean value of the small-scale pattern is 3 times that of the 

large-scale pattern. This scheme is illustrated in Figure 2. 

 

 

Figure 2. Illustration of the applied heat maps. Variable k 

denotes the maximum number of multiples of the statistical 

parameters from the respective other investigated pattern. 

 

 
 

 

3 Results 

For all results obtained, the initial means and variances start at 

μ = 25 and σ² = 400. Depending on which side the heat map is 

viewed, integer multiples of these values are adapted either 

for the small-scale (left and up) or for the large-scale sub-

pattern (right and down). The multiplication factor thereby 

corresponds to the number of shifted grid cells. The respective 

other sub-pattern remains in its initial state and Moran's I is 

then calculated from the overall pattern in a joint manner, i.e., 

including both statistically differing populations 

simultaneously. 

 

 

3.1 Superposed spatially uncorrelated patterns 

The results for the case of spatially uncorrelated overlapping 

patterns are given in Figure 3. The Moran‟s I values in the 

heat map in Figure 3a appear noisy. This is caused by the 

randomness introduced by the lack of spatial structure in the 

two overlapping patterns. 

The means involved need to be almost identical in order to 

observe Moran‟s I values close to its expected value of 

 , -        . This is supported by the box plots given in 

Figure 3b showing that, as soon as one of the involved means 

is more than three times that of the other, the spatial pattern in 

the data appears excessively negatively autocorrelated. 

Further, high positive outliers indicating clustering are only 

found on the same interval where the means are nearly 

identical. These outliers are caused by similar values from the 

different patterns, which are arbitrarily arranged next to each 

other by the spatial randomness in the attributes. However, 

this cannot happen when the means become too different, 

because all values are then too far away from the overall joint 

mean value, prohibiting the estimation of positive 

autocorrelation from the superimposed pattern. 

Mean ratios determine the magnitude of Moran‟s I. When 

the means of the two sub-patterns are very different, the 

overall spatial autocorrelation tends to be underestimated. The 

degree of underestimation converges to an almost constant 

level after the ratio of the means exceeds a factor of 10. 

Beyond this mark, further differences in the means have only 

a minor impact on the magnitude of Moran‟s I. The box plots 

in Figure 3b reveal this effect by the absence of a common 

trend line. The mean-induced effects are symmetric indicating 

that it does not matter whether the mean of the small-scale 

process exceeds the large-scale mean or vice versa. 

The ratio of the attribute variances dominates the variability 

and the range of Moran‟s I. Figure 3c shows that the 

variability in the estimated I values is small when the 

variances are roughly identical. In contrast, the dispersion of 

Moran's I increases when the variances of the two populations 

become more different. Moran's I then shows a wider range of 

values with more outliers, both positive and negative. These 

effects are again symmetric, showing that the scales of the 

overlapping patterns are not crucially important for a 

characterisation of spatial autocorrelation when random 

attribute patterns overlap. 

 

 

3.2 Superposed spatially autocorrelated patterns 

The heat map shown in Figure 4 provides the Moran‟s I 

values for the case of spatially structured superimposed 

patterns. The spatial structuring causes a smoother transition 

of Moran‟s I over the grid cells of the heat map, meaning that 

the estimation of the statistic is more predictable with respect 

to statistical parameters than with superimposed spatially 

random attributes. 

Differences in mean values determine the magnitude of 

Moran‟s I. In contrast to the symmetric behaviour observed 

with spatially random patterns, larger means in the small-scale 

process lead to higher Moran‟s I estimates than vice versa 

(Figure 4b). The reason is that, because of the applied 

weighting scheme, more values above the global combined 

mean value are being related with a relatively high weight, in 

turn leading to higher I values. This demonstrates a strong 

interaction between the type of applied spatial weights and the 

involved superimposed geometric scales. 

The rate at which differing means become effective is not 

symmetrical. While a relative increase in the mean of the 

smaller-scale process takes effect slowly, a sharper decrease 

in Moran‟s I is observed when the large-scale process 

becomes prominent. Clearly, there is a strong interaction 

between geometric and statistical parameters in the spatial 

analysis of spatially structured, partially overlapping patterns. 
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Figure 3: Moran‟s I with superimposed spatially random patterns. (a) Heat map of Moran‟s I values with different 

mean-variance combinations in the attributes; (b) Box plots summarizing the influences of mean differences (i.e., the 

rows); (c) Box plots summarizing the influences of differing variances (i.e., the columns). 

 

 
 

Figure 4: Moran‟s I with superimposed spatially autocorrelated patterns. (a) Heat map of Moran‟s I values with 

different mean-variance combinations in the attributes; (b) Box plots summarizing the influences of mean differences 

(i.e., the rows); (c) Box plots summarizing the influences of differing variances (i.e., the columns). 

 

 
 



AGILE 2018 – Lund, June 12-15, 2018 

 

5 

 

Differing variances play a minor role in comparison to the 

effects induced by mean differences. One notable observation 

is made in the case of dominant small-scale variances when 

the means of the sub-patterns are held almost identical at the 

same time. A large number of more pronounced positive 

autocorrelations is found on this interval, and that is caused by 

the generally larger number of points in the outer parts of the 

patterns. These feature higher attribute values than the interior 

parts. When the variance increases, the differences between 

interiors and outer parts become more pronounced, meaning 

that more and higher attribute values from one sub-pattern 

interact with similar ones from the other. This effect vanishes 

once the small-scale means exceed those of the large-scale 

pattern by a factor of approximately 15. Further, when the 

radial attribute pattern is reversed, the same effect appears in 

reversed form (i.e., the red grid cells in the heat map are then 

mirrored on the X-axis). 

Another variance effect is that the range of Moran‟s I is 

smallest when the variances of the involved attributes are 

almost identical. The affected interval is narrow, and there is a 

sharp but symmetric increase in both magnitude and range of 

Moran‟s I as soon as either of the variances dominates. 

 

 

4 Discussion and conclusions 

This paper examines the effects of different spatially 

superimposed statistical populations as those likely to be 

found in geosocial media data. The results are obtained on a 

synthetic spatial layout that mimics a partial geometric 

overlap of different phenomena. The following key insights 

are obtained: 

 Different simultaneously present means determine the 

intensity of Moran‟s I. 

 Different simultaneously present variances determine the 

range and variability of Moran‟s I. 

 Different sub-pattern mean values introduce negative 

autocorrelation, and thus lead to an underestimation of 

spatial autocorrelation. 

 Differences in the means and variances are only 

marginally influenced by their associated scales when the 

overlapping patterns are themselves spatially random. 

 When superimposed patterns are spatially structured, the 

scale of the pattern associated with the dominant mean 

value exerts stronger influence on changes in the 

interpretation of Moran‟s I. 

Limitations exist in both the chosen layout as well as the 

applied spatial weighting scheme. Other geometric forms and 

interaction types exist, as well as further relevant weighting 

schemes that are not investigated in this paper. Further, the 

drawn variates are taken from normal distributions only. 

Count data or rates are beyond the scope of this paper and 

deserve treatment in future research. This is especially the 

case when the overlapping attributes form mixtures not non-

symmetric random variables (cf. Griffith 2010). 

Despite its relation to spatial analysis, the research carried 

out in this paper contributes to the recent efforts to develop a 

GIScience theory of platial analysis. The focus on spatial 

superposition is thereby interesting, because, other than in 

traditional GIS, places are spatially overlapping and co-

located places must not be mutually related (Goodchild 2015). 

This work further supports efforts in other related disciplines 

facing similar technical issues. The event-sampling method 

(ESM) from psychology, which collects survey responses in 

situ, is one such example (Bluemke et al. 2017) for which the 

obtained results are useful with respect to the design of 

appropriate analytical approaches and to the interpretation of 

the collected survey responses. 

Future research should consider other geometric setups 

combined with other types of attributes and dispersal 

mechanisms. Further, related measures like Geary‟s c or Gi
* 

might lead to slightly different results, as these combine 

statistical information in different ways. For instance, unlike 

Moran‟s I, Geary‟s c estimates covariance through calculating 

squared attribute differences, which could change the results 

obtained in this paper. 
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