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1 Introduction 

Spatial uncertainty is endemic in geospatial data due to the 

imperfect means of recording, processing, and representing 

spatial information (Zhang and Goodchild, 2002; Shi et al., 

2016). As geospatial data often serve as inputs in models with 

spatially distributed parameters, such as physically-based flow 

simulation models, the propagation of spatial data uncertainty 

to uncertainty in model predictions is a critical requirement in 

GIScience and related fields (Heuvelink, 1998; Caers, 2011).  

Although analytical and/or quasi-analytical uncertainty 

propagation methods have been developed in the literature; 

see, for example, Şalap-Ayça et al. (2018), Monte Carlo 

simulation is rather routinely used for uncertainty propagation 

purposes, as it does not call for, often limiting, assumptions 

regarding the form of the spatial model itself. In a nutshell, 

Monte Carlo simulation consists of generating alternative 

samples (realizations) from the input parameters, evaluating 

the model response for each of these realizations, and 

constructing the corresponding distribution of model 

predictions. The spatial distribution of input parameters is 

often modeled within a geostatistical framework, and spatial 

Monte Carlo simulation is performed within the context of 

geostatistical simulation (Goovaerts, 1997).  

Any realistic uncertainty analysis, however, calls for the 

availability of a representative distribution of model outputs, 

and can become expensive in terms of both time and computer 

resources in the case of complex models (Helton and Davis, 

2002; Caers, 2011). This problem is far more pronounced in 

earth and environmental sciences applications, where, in 

hydrogeology for example, three dimensional grids of 

hydraulic conductivity values are used along with other 

parameters to simulate flow and transport in porous media 

(Gutjahr and Bras, 1993; Chilès and Delfiner, 2012). The 

computational cost associated with classical Monte Carlo 

spatial uncertainty propagation calls for the development of 

more efficient geostatistical simulation methods. 

This paper proposes key modifications to classical 

geostatistical simulation to render it more efficient in terms of 

generating more representative attribute realizations that 

better span the range of possible realizations corresponding to 

a geostatistical specification. Computing model predictions 

using a set of fewer, yet representative, input parameter 

realizations, is illustrated to reproduce model output sampling 

variability corresponding to a much larger input parameter set, 

thus reducing significantly the computational cost associated 

with Monte Carlo based spatial uncertainty propagation. 

 

2 Efficient geostatistical simulation 

2.1 Geostatistical simulation 

In a geostatistical context, the spatial distribution of values of 

attributes serving as inputs for spatial models is typically 

conceptualized via a random field; that is, a set of spatially 

correlated random variables, * ( )    +, one per location 

(Goovaerts, 1997), where  ( ) denotes a random variable 

(RV) defined at a location with coordinate vector  . 

Geostatistical simulation aims at generating multiple (a set of 

 ) simulated attribute values at a set of   locations *     
     +, typically coinciding with the nodes of a regular grid 

discretizing the study area; i.e., joint realizations from the M 

respective RVs * (  )        +. Those realizations are 

often constrained by (or reproduce) N attribute values 
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   , (  )        -  measured at data locations, and 

the simulation is termed conditional. 

In the second-order stationary multivariate Gaussian case 

(Goovaerts, 1997), the mean of the constituent RVs is 

assumed constant,   (  )    , and the covariance between 

any two RVs is a function of the length (distance) and 

possibly orientation of the vector defined between any two 

locations; covariance values are typically computed from a 

distance-decay, positive definite, covariance function inferred 

from sample data and/or expert knowledge. The M-variate 

joint distribution of the RVs is then Gaussian, and fully 

characterized by an (   ) constant expectation (mean) 

vector, denoted as:   ,  (  )        -      , 

where    is a vector with M unit entries, and an (   ) 
covariance matrix,   ,  (      )            
     -, with covariance values between all location pairs.  

In the multivariate Gaussian model, the conditional 

expectation of the M RVs given the N data values, is furnished 

by the (   ) vector of Kriging-derived predictions, 

 ̂   , ̂  (  )        - , which in the Simple 

Kriging (SK) case is written as: 

 

 ̂           
  ,     - 

 

where    ,  (  )        -  is a (   ) vector of 

expected values at the data locations,    
   is the inverse of the 

(   ) matrix     ,  (      )            
     - of covariance values between all data location pairs, 

and     ,  (     )                - is the 
(   ) matrix of covariance values between all simulation 

and data location pairs. 

The uncertainty in the Simple Kriging predictions is 

encapsulated in the (   ) matrix  ̂   ,  (   
   )                 - of conditional (co)variance 

values between all simulation location pairs, given as: 

 
 ̂            

      

 
where     ,  (     )                -  
   

  is the (   ) matrix of covariance values between all 

data and simulation location pairs. Note that the diagonal 

entries of matrix  ̂   are the values of the SK prediction error 

variance at the M simulation locations. 

Geostatistical simulation aims at generating (or sampling) a 

set of S attribute realizations (e.g., images in 2D), from the 

multivariate Gaussian distribution function  ( ̂    ̂  ). 

More specifically, a (   ) matrix   ,  (  )   
             - with conditionally simulated attribute 

values (a Simple Random (SR) sample of size S) – whose s-th 

row contains one conditional realization, i.e., one simulated 

attribute value for each of the M locations, and whose m-th 

column contains S simulated attribute values at one location -- 

can be generated as (Goovaerts, 1997): 

  
   ̂     ̂  

  

 

where  ̂   is a (   ) matrix with S replicates of vector 

  ̂  
  along its S rows, and   ̂  

  is a (   ) matrix of SK 

prediction error realizations (one per row), with   
,  (  )                - being a (   ) matrix 

of standard Gaussian deviates and  ̂   being the (   ) 
lower triangular Cholesky factor of the conditional covariance 

matrix  ̂  . 

 

2.2 Latin hypercube sampling for efficient 

geostatistical simulation 

An efficient alternative to classical Monte Carlo simulation 

based on SR sampling is Latin hypercube (LH) sampling, a 

form of stratified random sampling, aiming at generating 

representative samples or realizations from a set of random 

variables with a given multivariate probability distribution 

(McKay, Beckman and Conover, 1979). LH sampling has 

been shown to lead to model outputs with smaller sampling 

variability in their statistics than SR sampling for the same 

number of input simulated realizations; that efficiency, 

however, decreases the more non-linear that model becomes 

in the parameters (Helton and Davis, 2003). 

The most widely used methods for generating LH samples 

from a multivariate distribution are those of Iman and 

Conover (1982) and Stein (1987). In the first method, the 

entries of an uncorrelated SR or LH sample are re-arranged to 

match a target rank correlation matrix. In the second method, 

a correlated SR sample is transformed into a correlated LH 

sample based on the ranks of the former; correlation is 

inherited in the LH sample from the correlation in the ranks of 

the original SR sample. These methods do not rely on any 

Gaussian assumption, and both can be used for simulation 

with or without conditioning data. Relevant representative 

applications in a spatial context include the work of Zhang 

and Pinder (2003) and Pebesma and Heuvelink (1999), 

respectively. 

In what follows, classical, SR-sampling based, geostatistical 

simulation is modified to incorporate Stein’s LH sampling 

algorithm. More precisely, the local SR sample comprised of 

S conditionally simulated attribute values at any location    

is transformed into a conditional LH sample, comprised of S 

values stratified into S strata, one per stratum, as: 

  

  
 (  )     ( 

 (  (  ))    (  )

 
  ̂  (  )  ̂  (  )) 

 

where     is the inverse conditional cumulative distribution 

function (here Gaussian) of RV  (  ) with parameters 

 ̂  (  ), the local Kriging prediction, and  ̂  (  ), the local 

Kriging prediction error variance,  (  (  )) denotes the rank 

of the simulated attribute value   (  ) ranging from 1 for the 

smallest to S for the largest value simulated at the same 

location, and   (  ) is a random number uniformly 

distributed in the ,   - interval.  

The rank value  (  (  )) identifies a probability stratum 

associated with an original simulated value   (  ), and 

  (  ) furnishes a random probability perturbation within 

that stratum. The stratified probability values are then 

transformed into stratified Gaussian quantiles via the 

inverse local CDF. The result is a conditionally simulated 

LH sample of size S, marginally (location-wise) stratified, 

thus avoiding too similar by chance simulated values. 

Spatial correlation is induced in the LH realizations via the 
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ranks of the original (generated via SR sampling) 

conditionally simulated attribute values. 

 
 

3 Synthetic case study 

The application of the proposed conditional Latin hypercube 

simulation method, in comparison with SR sampling, is 

illustrated via a synthetic case study within a hydrogeological 

context involving flow and transport in a heterogeneous 

porous medium. More precisely, a two-dimensional synthetic 

groundwater flow system is considered, similar to that 

adopted by Zhang and Pinder (2003) and Kyriakidis and 

Gaganis (2013). The dimensions of the flow system are 

1010m by 1010m discretized into a 101×101 grid with 

uniform rectangular cells of size 10m by 10m each.  

The spatial distribution of hydraulic conductivity values in 

this domain is modeled as a realization of a second-order 

stationary and isotropic lognormal random field with 

parameters (mean and variance) derived from real-world data 

reported in Sudicky et al. (2010). The semivariogram of log 

conductivity is assumed to be of exponential form, with no 

nugget effect, and effective range 202 m, corresponding to 

one fifth of the domain extent along the cardinal directions. 

Sample hydraulic conductivity data were extracted from an 

unconditional simulation from that reference random field 

model, and were used as conditioning data for all subsequent 

simulations. Two (reference) conditional realizations of this 

random field model using geostatistical simulation with SR 

sampling are illustrated in Figure 1. 

 

Figure 1: Two conditional simulations of hydraulic 

conductivity (m/s); red dots show sample data locations. 

 
 

A set of 1000 hydraulic conductivity (reference) conditional 

simulations were generated using SR sampling and used as 

input for a flow and transport model. More precisely, flow 

boundary conditions consisted of constant hydraulic head 0m 

at the four corner cells and a constant hydraulic head of 50m 

at the central cell of the domain; no flow conditions were 

assigned to the rest of the domain boundaries. For the solute 

transport problem, an initial concentration equal to 0mg/l is 

assumed throughout the model domain. At time t = 0, a 

contaminant is introduced at the central source cell, along the 

upstream constant head boundary, with constant concentration 

100mg/l; no transport conditions are assigned along the 

domain boundaries. In terms of software, the Modflow code 

(McDonald and Harbaugh, 1988) was used to obtain the 

steady state flow solution, and the MT3D code (Zheng, 1990) 

was used to obtain  the solute transport solution up to time t = 

2·10^6sec. Two simulated solute concentration realizations, 

the ones corresponding to the hydraulic conductivity 

conditional realizations of Figure 1, are shown in Figure 2. 

 

Figure 2: Solute concentration realizations (mg/l); S denotes 

the contaminant source location. 

 
 

Ensemble statistics for hydraulic conductivity and solute 

concentration are derived from the set of 1000 conditional 

realizations of conductivity (representing model inputs) and 

the corresponding set of 1000 simulations of concentration 

(representing model outputs), respectively. The ensemble 

average and standard deviation fields for conductivity pertain 

to the mean and standard deviation of simulated conductivity 

values at any location, and are show in Figure 3. Similarly, the 

ensemble mean and standard deviation fields for concentration 

pertain to simulated concentration values at any location, and 

are show in Figure 4. These four ensemble fields (two for 

conductivity and two for concentration) are considered as 

reference statistics, as they are derived from a very large set of 

simulations. 

 

Figure 3: Ensemble average (left) and standard deviation 

(right) fields of hydraulic conductivity (m/s). 

 
 

Figure 4: Ensemble average (left) and standard deviation 

(right) fields of solute concentration (mg/). 

 
 

The objective now becomes the reproduction of the 

ensemble statistics from analogous statistics computed from 

sets of simulations involving much fewer realizations. More 
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precisely, conditional simulation using classical SR sampling 

and the proposed LH sampling are considered for generating 

realizations of a lognormal hydraulic conductivity field, with 

the same parameters used for the reference simulations, and 

two sample sizes (number of realizations); namely, S = 10 and 

S = 30. Once a sample is generated, the discrepancy between 

the statistics of the simulated ensemble and the reference 

ensemble statistics fields is quantified using the root mean 

squared error (RMSE). The computation of RMSE is repeated 

over a set of 100 batches of realizations, with each batch 

containing the same sample size, in order to compute the 

sampling distribution of the RMSE. The sampling 

distributions of RMSE values for each sample size and for 

each method are then used to compare the reproductive 

abilities of the methods under consideration.  

In Figures 5 and 6 hereafter, RMSE sampling distributions 

are presented in terms of their means and medians, as well as 

their 75% and 95% probability intervals. Mean values are 

depicted with circles (o), median values with asterisks (*), 

75% RMSE probability intervals with horizontal line 

segments, and 95% probability intervals with × symbols. The 

better the reproduction of a reference ensemble statistic field 

from realizations of a simulation method, for a given sample 

size, the narrower the sampling distribution of the resulting 

RMSE values, the smaller (closer to 0) the center of that 

distribution.  

 

Figure 5: Hydraulic conductivity ensemble average (left) and 

standard deviation (right) reproduction. 

 
 

 

Figure 6: Solute concentration ensemble average (left) and 

standard deviation (right) reproduction 

 
 

It can be readily appreciated that the proposed LH-based 

geostatistical simulations of hydraulic conductivity reproduce 

much better the reference ensemble statistics fields of Figure 3 

for both sample sizes that the classical SR-based simulations. 

In other words, the centers of the corresponding vertical bars 

of Figure 5 are much lower for the proposed method than for 

classical SR sampling; this implies that the ensemble statistics 

from the proposed method are more similar to the 

corresponding reference statistics. Moreover, those bars are 

also narrower for the proposed method implying a smaller 

spread; i.e., smaller sampling variability and closer agreement 

with the reference target statistics. Similar conclusions can be 

reached for the case of solute concentration from Figure 6, 

although the differences between the proposed and classical 

methods are smaller, particularly for the case of the ensemble 

standard deviation field (Figure 6, right).   

 

 

4 Discussion 

Monte Carlo simulation based on simple random (SR) 

sampling is typically the method of choice for uncertainty 

propagation purposes in GIScience and related applications in 

earth and environmental sciences. This method, however, can 

become computationally expensive in the case of models with 

spatially distributed parameters or inputs, such as complex 

environmental models involving flow and transport, whereby 

repeated evaluation of computationally expensive models is 

required. 

A novel geostatistical simulation method has been proposed 

in this paper, whereby the concept of Latin hypercube (LH) 

sampling, widely used in a non-spatial context, is integrated in 

classical conditional geostatistical simulation. The result is a 

computationally efficient method for generating representative 

(not too similar by chance) realizations of spatial variables 

from a random field model; these realizations are shown to 

span in a much better way the “uncertainty space” pertaining 

to both the input variables and the output model predictions. It 

is expected that the proposed geostatistical simulation method 

will contribute to an even wider application of Monte Carlo 

based spatial uncertainty propagation in practice.  

As the proposed geostatistical simulation method in this 

work involves the Cholesky factorization of a covariance 

matrix, a task that becomes prohibitive for simulation at a 

large number (>50,000) of locations, further enhancements 

are required to tackle the issue of simulation at the nodes of 

large (often 3D) discretization grids. Such extensions have 

been reported in Liodakis et al. (2015) for the unconditional 

simulation case, and are currently under development for the 

conditional simulation case. 
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