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1 Introduction 

Map providers produce various maps at different scales and 

themes. A challenging problem for them is deriving small-

scale maps from larger-scale ones. The current used processes 

are time-consuming, costly, and complicated. The process of 

transforming large-scale maps into small-scale maps is called 

map generalization, which is intended to improve the 

readability of maps and maintain their essential information 

[Brassel and Weibel 1988, McMaster and Shea 1992, K.S 

Ruas et Plazanet 1996]. 

 Typical map generalization operators include 

simplification, displacement, elimination, and aggregation. 

Elimination is needed to remove small buildings, such as 

sheds or isolated buildings. Displacement is needed to 

separate buildings that would be too close to each other in the 

desired map scale, or to move buildings further from roads. 

Aggregation groups buildings into larger units of built-up 

blocks if the buildings are not to be separately shown [Lee et 

al. 2017]. 

Many studies have been conducted on automated map 

generalization in the GIS/cartography field [Lee et al. 2017, 

Wang et al. 2017]. The above operators were developed based 

on these studies, which determined how map features should 

be represented at a small scale.  Among the various data 

themes, the building features have attracted much research 

attention in the field of map generalization because of their 

man-made shape and complex spatial distribution. 

 
2 Learning Classification Rules 

In this study, generalization process is considered as 

classification problem, where each building polygon in a 

smaller scale, the following output classes were assigned: 

“eliminated,” “retained,” and “aggregated”.  

Interpretability is an added value sought in classifiers that 

are built within supervised machine-learning. Given a set of 

training data, a common task is to extract a model that 

predicts the class label of an unseen example. The 

generalization or discriminating capacity of a classifier 

measures the number these predictions of unseen examples 

that are correct. 

In machine learning and data mining [Urbanowicz and 

Moore 2009, Fürnkranz et al. 2012], decision tree and rule 

induction algorithms possess the desired ability to build 

understandable models. They share the goal of finding 

regularities in data that can be expressed in the form of an IF-

THEN rule. 

 

3 Proposed methodology 

A four-staged methodology is proposed in this study with the 

goal of extracting useful rules for map generalization .We 

mainly focused on three operators, retaining, elimination and 

aggregation. The flowchart of the methodology is shown in 

Figure 1. The source data for testing, the building layer of a 

digital map with a scale of 1:5000 and 1:25000. 

 

Figure 1: proposed methodology flowchart 
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3.1 Building polygons characterization 

We had to generate training data to apply the machine 

learning technique to this process. Training data are required 

for applying classification algorithms, and they must contain 

input features and output classes. We extracted the input 

features from attributes of 1:5000 vector layer and to generate 

the output class by comparing the areas of 1:5000 and 

1:25,000 data. Various geometric and topological attributes 

were used as input features.  

 

3.2 Polygons labeling  

For the representation of each building in a smaller scale, 

the following attributes were used as output classes: “0-

eliminated,” “1-retained,” and “2-aggregated”. As suggested 

in [Lee et al. 2017].] the labeling was performed using the 

overlapping areas between 1:5000 and 1:25,000 buildings. 

The criterion for identification of two building objects in both 

datasets as representing the same building object in reality 

was the overlapping area, which was over 80%. Figure 2 

shows the three cases taken into account during the buildings 

labelling process. 

 

Figure 2: the three cases taken into account 

 

 
 

3.3 Feature selection 

The desired generalization rules should be as simple as 

possible. Thus a feature selection step was necessary to 

eliminate the less informative attributes in the classification 

process.   

 
3.4 Classification rules learning 

The final stage is the generation of the classification rules 

and writes them in an understandable way such as decision 

trees or IF-Then rules, then apply these rules on unseen 

dataset 1:5000 to test their generalization ability.  

 

 

4 Used dataset 

The 1:5000 and 1:25000 building layers used in this study 

were downloaded from the OpenGeodata of Abruzzo region 

in Italy “Il portale dei dati aperti della Regione Abruzzo” 

(opendata.regione.abruzzo.it).The primary goal in this study 

was to derive the 1:25000 scale. We selected 1:5000 and 

1:25000 data as source data because these datasets showed 

more prominent differences than the other available datasets. 

In total, 2271 buildings were used for the training data and 

1988 for the test data (Figure 3). The building shapes had 

various forms.  

 

Figure 3: study area and used training and test datasets 

 

 
 

 

5 Results and discussion 

Random Forests, an assembling classification tree, that 

provides feature importance index, we iteratively eliminate 

features with less important index until the mean decrease 

accuracy is stable [Breiman 2001, Guan et al. 2012] 

A set of topological and polygon shape indices are 

computed for each 1:5000 polygon. This includes: distance to 

closest polygon (ND), area (AR), perimeter (PR), 

compactness (CO), perimeter / area (PA), perimeter / square 

root of the area (PSA), maximum distance (MD), maximum 

distance / area (DA), maximum distance / square root of the 
area (DSA) and shape index (SI). 

The feature importance values obtained using the random 
forest classifier, are presented in Figure 4. 

Figure 4: feature importance for each attribute 
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According to figure 4 Area and Distance to neighbor 

polygon are the most importance attributes. Thus, these two 

features are considered in the classification process. 

In our study, as mentioned earlier, we applied the following 

classification rule learning methods:  C4.5 decision tree (DT), 

Repeated Incremental Pruning to Produce Error Reduction 

rules (RIPPER), PARtial decision Trees (PART) and the 

Unordered Fuzzy Rule Induction (FURIA). The different rule 

learning experiments are conducted using the well-known 

datamining Weka software [Quinlan 1993, Cohen1995,  Frank 

and Witten 1998, Hall et al. 2009, Hühn 2009]. 

 

The rules obtained by the C4.5 DT algorithm are the 

following: 

 

NEAR_DIST <= 1.482725 

|   Area5k <= 652.9: aggregated (420.0/57.0) 

|   Area5k > 652.9 

|   |   NEAR_DIST <= 0.13345 

|   |   |   Area5k <= 772: eliminated (5.0/1.0) 

|   |   |   Area5k > 772: retained (8.0/1.0) 

|   |   NEAR_DIST > 0.13345: aggregated (6.0/1.0) 

NEAR_DIST > 1.482725 

|   Area5k <= 49.5: eliminated (184.0/3.0) 

|   Area5k > 49.5: retained (1648.0/41.0) 

 

Where numbers between brackets represents: first is the  

number of polygons covered by the rule and the second is  

the number of misclassified ones. 

The rules obtained by the RIPPER algorithm: 

  (Area5k <= 49.5) and (NEAR_DIST >= 1.528121) => 

Class=eliminated (184.0/3.0) 

(NEAR_DIST <= 1.479654) and (Area5k <= 190) => 

Class=aggregated (265.0/29.0) 

(NEAR_DIST <= 1.483) and (NEAR_DIST >= 0.22422) 

=> Class=aggregated (122.0/19.0) 

(NEAR_DIST <= 0.22269) and (Area5k <= 508.2) => 

Class=aggregated (38.0/9.0) 

 => Class=retained (1662.0/46.0) 

 

The rules obtained by the PART algorithm  

 

NEAR_DIST > 1.482725 AND 

Area5k > 49.5 AND 

NEAR_DIST <= 19.910824: retained (1517.0/29.0) 

NEAR_DIST <= 1.482725 AND 

Area5k <= 652.9: aggregated (420.0/57.0) 

Area5k <= 60.6 AND 

Area5k <= 48.6: eliminated (181.0/2.0) 

NEAR_DIST > 19.911294 AND 

Area5k > 60.6: retained (126.0/7.0) 

NEAR_DIST > 0: aggregated (15.0/6.0) 

Area5k > 772: retained (8.0/1.0) 

: eliminated (4.0/1.0) 

 

The rules obtained by the FURIA algorithm  

 

(NEAR_DIST in [-inf, -inf, 1.482725, 1.509036]) and 

(NEAR_DIST in [0.118258, 0.13345, inf, inf]) => 

Class=aggregated (CF = 0.88) 

(NEAR_DIST in [-inf, -inf, 0, 1.170677]) and (Area5k in [-

inf, -inf, 217.4, 218.6]) => Class=aggregated (CF = 0.9) 

(NEAR_DIST in [-inf, -inf, 0, 1.222604]) and (Area5k in [-

inf, -inf, 508.2, 556.7]) => Class=aggregated (CF = 0.86) 

(NEAR_DIST in [1.538829, 1.545353, inf, inf]) and 

(Area5k in [56.2, 57, inf, inf]) => Class=retained (CF = 0.98) 

(Area5k in [49, 50.6, inf, inf]) and (NEAR_DIST in 

[1.482725, 1.509036, inf, inf]) and (NEAR_DIST in [-inf, -

inf, 18.213694, 19.911294]) => Class=retained (CF = 0.98) 

(Area5k in [1162.5, 1249.7, inf, inf]) and (NEAR_DIST in 

[-inf, -inf, 0, 0.842308]) => Class=retained (CF = 0.93) 

(Area5k in [-inf, -inf, 49.5, 50.6]) and (NEAR_DIST in 

[1.435002, 1.528121, inf, inf]) => Class=eliminated (CF = 

0.97) 

 

The confusion matrix from the PART algorithm outputs is 

presented in Table 1. 

 

Table 1: Confusion matrix. 
aggregated retained eliminated <-- classified as 

372   24 2 aggregated 

26 1614 1 retained 

37 13 182 eliminated 

 

The number of generated rules, overall classification 

accuracy, kappa coefficient and time taken to build each 

model are provided in Table 2.  

 

Table 2: obtained classification statistics for each algorithm. 
Algorithm Nb. Rules Acc. (%) Kappa Time (s) 

DT 6 95.42 0.8939 0.02 

RIPPER 5 95.33 0.8915 0.12 

PART 7 95.46 0.8952 0.10 

FURIA 7 95.24 0.8899 0.72 

 

Statistics in Table 2 are computed based on obtained 

classification confusion matrices. The overall accuracies of 

each algorithm are: DT, 95.42%; RIPPER, 95.33%; PART, 

95.46%; and FURIA, 95.24%. All the four algorithm show 

high accuracies (above 95%) and Kappa coefficients (above 

0.88) .DT showed high accuracy and significantly lower time 

taken to build classification model than the other three 

algorithms, but the obtained model is a decision tree instead of 

IF-THEN rules. PART algorithm showed the highest accuracy 

and kappa coefficient and the generated rules are of type IF-

THEN.   

 

 

6 Conclusion 

In this study, we applied differents classification rules 

learning (DT, PART, RIPPER, FURIA) to retained, eliminate 

and aggregate building polygons when updating scale from 

1:5000 to 1:25000. Various topological and geometric 

properties of the building layer were used. The accuracy of 

each algorithm was also evaluated.  

http://sci2s.ugr.es/keel/pdf/algorithm/articulo/2009%20-%20FURIA%20-%20HuhnHullermeier%20-%20DMKD.pdf
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The proposed technique can be used to other scale (e.g., 

1:1000 and 1:50,000 scale). It is simple to apply this method 

to the new datasets, as long as the building is labeled by the 

proposed method or other methods. Results can be obtained 

by applying the above-noted machine learning algorithms, the 

output class resulting from labeling, and the attribute as the 

input feature, which will affect the output class.  

This study had some limitations and more building 

generalization cases should be addressed such as displacement 

and simplification. 

Moreover, extracting useful rules from black-boxed 

classifiers such as SVM and Artificial neural networks can be 

considered in future works. 
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