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1 Introduction 

Most geo-social media platforms are location based services 

that map and geocode user activities. Such geocoded activities 

provide the basis for the spatial analysis of activity patterns of 

these users. This study will analyze the locations of 

contributions of 10 users to two prominent social media 

platforms. For each user it will characterize the activity space 

obtained from each platform, and also compare the similarity 

of contributions between both platforms. The two platforms 

used are Instagram (IG), a photo and video sharing service 

with 500 million daily users1, and Foursquare with 50 million 

active monthly users2. Foursquare provides two apps, namely 

Foursquare City Guide, which is used to review and rate 

businesses (e.g. restaurants), and Foursquare Swarm, which is 

a check-in tracker that allows users to log visited places. 

Geolocation in Instagram is done by attaching a predefined 

location to a media object (Cvetojevic et al., 2016). Swarm, 

the check-in tracker of Foursquare uses a similar approach and 

lets users select a place from nearby venues. These predefined 

locations are user-generated, therefore often contain errors 

(Hochmair et al., 2018). IG users sometimes associate their 

photos with generic locations (i.e. a city or region) instead of 

choosing the true location of the image for increased privacy 

(Cvetojevic et al., 2016), leading to position inaccuracies. 

There is evidence in the literature that individuals do 

contribute geo-data to multiple volunteered geographic 

information platforms, such as OpenStreetMap and Mapillary 

(Juhász and Hochmair, 2016a).  

                                                                 
1
 http://blog.instagram.com/post/165759350412/170926-news  

2
 https://foursquare.com/about  

Human activity space is defined as the area within which the 

majority of an individual’s day-to-day activities are carried 

out (Johnston et al., 2000). Traditionally, studies approximate 

this area with ellipse-based representations (Yuan and Raubal, 

2016), however, such ellipses cannot capture the complexity 

of shapes associated with human activities. Wildlife ecology 

developed the concepts of home-ranges and utilization 

distributions (UD). A home-range of an animal is the area in 

which the animal conducts 95% of its activities (Worton, 

1987). UD is the probability distribution defining an animal’s 

use of space (Van Winkle, 1975). Core areas are often defined 

by the 50% probability contour. We adapt these concepts to 

social media use. The first objective of this paper is therefore 

to adapt several methods from wildlife ecology to extract 

home and core areas for IG and Swarm users. 

The second objective is to apply and evaluate several 

methods of spatial pattern comparison (SPC) to 

mathematically quantify the (dis)similarity between social 

media footprints in different platforms. A review of SPC 

methods and associated issues are given by Long and 

Robertson (2017). One of the issues associated with SPC is 

the modifiable areal unit problem (MAUP), which means that 

different spatial configurations (e.g. grid size) affect the 

results of statistical analysis (De Smith et al., 2015). 

Therefore, both grid-based and scale independent methods are 

presented here. 
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2 Materials and methods 

2.1 Dataset description 

Locations of IG media (photos, videos) and Swarm check-ins 

from 10 individuals were used to test different methods of 

activity space extraction and comparison. The 10 users were 

selected based on the criteria of using both IG and Swarm 

simultaneously. For privacy reasons, user-sensitive data (e.g. 

location history) from IG and Foursquare are not accessible to 

the public, therefore users need to explicitly authorize 

applications to access their data. Guidelines for developing 

such applications, including the authorization process, are 

provided in the literature (Juhász et al., 2016). The analysis 

was limited to a city for each user where he or she had 

previously lived at some point. Table 1 lists the number of 

data points from users for both platforms that were used in the 

study. 

 

Table 1: Summary of the dataset 

User 

ID 

City Instagram 

(geotagged) 

Swarm 

1 Fort Lauderdale, FL 82 1,360 

2 Tampa Bay area, FL 342 230 

4 Szeged, Hungary 21 589 

6 Budapest, Hungary 14 56 

7 Salzburg, Austria 14 193 

8 Budapest, Hungary 39 1,583 

9 Szeged, Hungary 21 1,743 

10 Budapest, Hungary 20 6,620 

11 Szeged, Hungary 9 2,620 

12 Miami, FL 16 322 

 Total 578 15,136 

 

 

2.2 Methods for activity space extraction  

The minimum convex polygon (MCP) represents the 

minimum area containing all observations and is a widely 

used home-range estimation tool (Mohr, 1947). To estimate 

the home-range, a certain number of points furthest from the 

centroid can be excluded for the generation of the MCP. For 

example, the area retained after excluding 50% of the furthest 

points can be considered the core area. While simple, MCPs 

by definition can only produce convex shapes, which 

sometimes does not correspond to a real world scenario. 

Characteristic hull (CHull) methods based on Delaunay 

triangulation overcome this limitation (Downs and Horner, 

2009). An advantage of CHull based methods is that they can 

handle disjoint areas and do not require any input parameters. 

Local convex hulls (LoCoH) utilize a similar concept as 

MCPs, and build convex hulls from observations and their 

neighbors (Getz et al., 2007). Different variations exist 

depending on neighbour selection criteria, such as fixed-r 

LoCoH or adaptive. The adaptive LoCoH selects a variable 

number of neighbors so that the sum of distances is less than a 

given threshold. Hulls can be then merged together from 

smallest to largest to extract home-ranges. LoCoH tools 

provide natural looking results but are sensitive to input 

parameter selection. 

Kernel density estimators (KDE) are also used to extract 

home-ranges by generating a probabilistic surface. This 

allows to determine the estimated proportion of observed 

events within a selected area. Their drawback is that 

estimations are affected by bandwidth selection and that they 

are not robust with complex shapes (Downs and Horner, 

2009).  

This paper illustrates the adaption of home and core ranges 

from wildlife ecology to the geo-social media domain. 

 

 

2.3 Overlap and similiarity metrics 

Two metrics from Fieberg and Kochanny (2005) are applied 

to the extracted activity areas explained in Section 2.2. The 

simplest method calculates the percent overlap between 

activity areas from two sources as 
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where OA,B is the overlap index that shows the proportion of 

the activity area in platform A (AA) that overlaps with the 

activity area in platform B, and AA,B is the area of overlap 

between platforms A and B activity areas. The overlap index 

ranges from 0 to 1. 0 means no overlap, whereas 1 means that 

the activity area of platform A is entirely within that of 

platform B. Another overlap metric is the UD overlap index 

(UDOI), which is a function of the product of two UDs. UD in 

this context is the probability distribution defining a user’s use 

of space in IG or Swarm. Practically, UD is a KDE output 

surface. UDOI is calculated as 
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where AA,B is the overlap area between platform A and B. 

UDs,   ̂  and   ̂  are the estimated UDs for platforms A 

and B, i.e. Swarm and IG. UDOI equals 0, if there is no 

overlap between home-ranges, and it is 1 in case of a 100% 

overlap (assuming that the two UDs are equally distributed). 

The drawback of these two overlap indices is that they depend 

on the extraction of activity spaces. Therefore, we present four 

other approaches to quantify the similarity between point sets 

that are independent of extracted activity spaces. 

One approach is the radius of gyration (RG) which 

measures the spread of point locations around the mass center 

and can therefore be applied to individual users (Juhász and 

Hochmair, 2016b). A radius of gyration index (RGI) between 

two platforms A and B can be calculated as 

 

       
       
       

 

(3) 

where RGA and RGB are the radius of gyration values for 

platforms A and B, respectively. This index ranges between -1 

and 1, where a positive value means that locations in platform 

A are more spread than in platform B, a negative value means 

the opposite, and zero means identical spread. The drawback 
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is that the RGI does not provide information about the co-

location of two point sets. 

The Jaccard-index (J) is a normalized similarity measure 

that measures the co-occurrence of attributes in different 

object classes (Hochmair, 2005). In the context of this study, 

the analyzed geographic space can be subdivided into regular 

grid cells, and J can be calculated as 

 

   
   

         
 

(4) 

where MA is the number of grid cells with platform A events 

only, MB is the number of cells with platform B events only, 

and MAB is the number of cells with both types of events. J 

ranges from 0 (no overlap) to 1 (platform A and B events 

occur in the same cells). 

Adapted from Lenormand et al. (2014), another grid-based 

approach (GC – grid correlation) can be used. It aggregates 

the number of IG media objects and Swarm check-ins by grid 

cells and then normalizes these grid values by dividing them 

by the total number of media or check-ins, respectively. The 

Pearson-correlation coefficient between these two grid-based 

variables measures the spatial similarity of IG and Swarm 

usage.  

In the computer vision domain Coen et al. (2011) proposed 

a similarity distance (ds) between two point sets that uses the 

Kantorovich-Wasserstein metric (dKW). The dKW metric 

provides an optimal solution to the transportation problem 

which can be formulated as: “What is the optimal way to ship 

goods from suppliers to receivers?” and denotes the 

maximally cooperative way (i.e., involving communication to 

minimize global cost) to transport masses between sources 

and sinks. ds is defined as 

 

  (   )  
   (   )

   (   )
) 

(5) 

where dNT is the naïve solution to the same problem, simply 

summing all ground distances between the point sets. ds 

measures how much is gained by optimization of the transport 

problem. ds equals 0 if the point sets are identical (i.e. 

receivers in the original problem are co-located with suppliers, 

therefore the optimal distance is 0). It equals 1 if the 

optimization does not result in gain (i.e. point sets are so 

different that dKW = dNT). 

 

 

3 Results 

3.1 Activity spaces 

Home and core areas were computed for three vector-based 

methods (MCP, CHull, LoCoH – adaptive with half the 

maximum distance) and for a KDE based method (using a 

bivariate normal kernel) as described in Section 2.2. 

Estimation of IG core areas was not successful for users 6, 10 

and 11 due to the low point number and the distribution of 

those points. The CHull method produces artificial patterns in 

most real world scenarios as seen in Figure 1. Thin triangles 

(line-like features on Figure 1) appeared in the extracted 

activity areas that are most prominent along roads. This is a 

common scenario, since businesses are typically located along 

the road network, and therefore, social media users tend to use 

the space accordingly. Hence, the CHull is not an adequate 

method to estimate activity spaces of social-media users. 

 

Figure 1: Activity space estimation with the CHull method 

 
 

Figure 2 illustrates the results of home and core area 

estimation for the remaining methods. The major drawback of 

MCP (Figure 2a) is that it always results in convex shapes. In 

addition, excluding points furthest from the centroid is not 

adequate if the activity is not uniformly distributed (e.g. when 

major activity happens around two distinct locations). Both 

LoCoH (Figure 2b) and KDE (Figure 2c) overcome these 

limitations and allow concave and disjoint geometries. 

However, both methods depend on input parameters, such as a 

radius in case of LoCoH, and bandwidth and grid size in case 

of KDE.  

 

Figure 2: Estimated home and core areas for Foursquare/Swarm (User #1) 
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Visual inspection of results suggests that MCP and KDE 

overestimate both home and core areas. As opposed to this, 

LoCoH performed well in the core area estimation for user 1 

in Figure 2b, by producing two disjoint areas, i.e. around the 

workplace (#1) and the usual lunch spot (#2), where most 

daily activities happen. 

 

 

3.2 Similarity of activities 

To apply and illustrate overlap metrics that depend on 

activity space extraction, overlap indices (O) were calculated 

for both home and core areas between IG and Swarm for all 

users, based on areas extracted with LoCoH and KDE. UDOI 

was calculated based on the results of KDE. Results are listed 

in Table 2. For clarity, an interpretation of user 2 is given as 

an example. Figure 3 shows the extracted Swarm and IG 

activity areas for this user. Moving from left to right in Table 

2, an Osi value of 0.784 means that 78.4% of the Swarm home 

area is overlapped by IG. However, Ois shows that only 6.1% 

of the IG home area is overlapped by Swarm activity, 

suggesting that IG covers a much larger area among the two 

platforms. Table 2 also shows that for user 2, core areas 

extracted with the LoCoH method do not overlap, meaning 

that the IG and Swarm activities of this user are focused on 

different areas. Home areas extracted with a kernel based 

method show a similar pattern, however, with less spatial 

separation, which might be explained by the overestimation of 

KDE areas. This resulted also in an overlap between IG and 

Swarm core areas. The low UDOI value for core areas 

confirms that the user uses the space differently in these two 

platforms.  

 

Figure 3: Comparison of IG and Swarm activity areas 

 
 

To compare user activity directly without the generation of 

home or core range estimates, we test several approaches. 

Table 3 lists J, GC, RGI and ds similarity statistics calculated 

for the 10 users. J and GC are grid based methods affected by 

MAUP. To elaborate on this effect, we calculate J and GC for 

1km and 2km grids. J measures the spatial co-occurrence of 

IG and Swarm activities regardless of their intensity. To 

account for intensity, GC can be used. A higher correlation for 

users indicates that those users post IG photos primarily at 

those areas where they also check-in. Values in bold indicate 

statistical significance at a 1% significance level. The RGI 

quantifies spread. Values close to 0 indicate that the user uses 

IG and Swarm within equal range of a center location. A 

positive RGI in this table means that the user’s Swarm check-

ins are more spread out than IG posts, a negative RGI means 

the opposite. A higher ds value means that the point sets of IG 

posts and Swarm check-ins differ whereas a ds value closer to 

0 indicates that the point sets are closer to identity. 

 

Table 3: Global similarity metrics 

User 

ID 

Jaccard-index 

(J) 

Grid-correlation 

(GC) 

RGI(s,i) ds 

1km 2km 1km 2km 

1 0.19 0.30 0.41 0.62 -0.25 0.49 

2 0.14 0.23 0.01 0.28 -0.20 0.56 

4 0.15 0.22 0.58 0.75 0.07 0.37 

6 0.22 0.30 0.63 0.84 0.22 0.45 

7 0.33 0.33 0.78 0.88 0.06 0.32 

8 0.13 0.19 0.44 0.66 -0.05 0.31 

9 0.12 0.15 0.91 0.97 -0.27 0.49 

10 0.05 0.05 0.05 0.11 0.11 0.71 

11 0.06 0.13 0.91 0.96 -0.10 0.47 

12 0.07 0.10 0.20 0.49 0.34 0.68 

 

As Table 3 shows, increasing grid size results in higher J 

indices and stronger correlations (GC) between IG and Swarm 

activity. The similarity approaches can be illustrated for a 

sample user (user 9). Figure 4a shows the IG post and Swarm 

check-in locations on top of a 1km grid. The relatively low 

Jaccard-index values (0.12; 0.15) indicate that most IG posts 

and Swarm check-ins do not co-occur in space. However, 

under consideration of intensity, the Pearson-correlation 

coefficient (0,91; 0.97) yields strong agreement between IG 

and Swarm (Figure 4b). This is because areas with the highest 

number of check-in locations correspond well to the majority 

of IG photos, i.e., in the city center. The negative RGI value 

for this user indicates that check-in activity is spatially more 

Table 2: Overlap indices for home and core areas calculated based on LoCoH and KDE, along with UDOI 

User ID Home-area (LoCoH) Core-area (LoCoH) Home-area (KDE) Core-area (KDE) 

Osi Ois Osi Ois Osi Ois UDOI Osi Ois UDOI 

1 0.571 0.212 0.01 0.002 0.792 0.641 0.887 0.883 0.308 0.081 

2 0.784 0.061 0.000 0.000 0.739 0.245 0.821 0.356 0.143 0.135 

4 0.109 0.632 0.000 0.000 0.723 0.998 1.249 0.588 0.767 0.146 

6 0.239 1.000 - - 0.449 0.997 1.337 0.752 0.991 0.256 

7 0.121 0.779 0.000 0.000 0.783 0.918 1.204 0.870 0.849 0.249 

8 0.545 0.779 0.200 0.061 0.601 0.845 1.153 0.511 0.502 0.170 

9 0.166 0.884 0.232 0.098 0.911 0.567 0.670 1.000 0.756 0.100 

10 0.05 0.866 - - 0.427 0.862 0.348 0.000 0.000 0.004 

11 0.638 0.832 - - 0.775 0.779 0.869 0.888 0.867 0.128 

12 0.076 0.659 0.000 0.000 0.312 0.797 0.880 0.477 0.465 0.193 
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concentrated (in the city center), which can also be confirmed 

visually.  

 

Figure 4: Swarm and Instagram activity for user 9 (a) and 

Pearson correlation (b) 

  
 

 

4 Summary 

This study applied the concept of home-ranges and utilization 

distributions from wildlife ecology to Instagram and 

Foursquare/Swarm users to extract home and core areas. 

Results show that the choice of the range extraction method 

has a strong effect on mapped home and core regions, and that 

KDE methods tend to overestimate the spatial extent of 

events. The paper also presented methods to quantify the 

similarity between spatial patterns of a user’s geo-social 

media activities. Future work will extend the analysis to 

additional social media platforms and a larger user base. We 

will also explore possibilities to obtain more reliable (i.e. true) 

activity areas from alternative sources, e.g. from phone data, 

to be able to evaluate activity areas obtained from social 

media platforms. 
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