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1  Introduction 

Information visualization supports humans in understanding 

large amounts of data, e.g., in finding patterns, that would 

otherwise not be apparent. With the increase of geographic 

information, the higher levels of detail and complexity of such 

data, and the heterogeneous sources these data originated 

from, effective visualization techniques are becoming a key 

element of data analytics. They also play a role in fields such 

as geographic information retrieval (GIR) in which they foster 

the interpretation of search results beyond simple rankings. As 

the core component of GIR and general information retrieval 

systems more broadly, semantic similarity can be computed 

from different semantic relationships between (geographic) 

features as well as by comparing shared and unique 

characteristics of such features (Schwering 2008, Janowicz et 

al. 2011). To give an intuitive example, two historic places 

may be similar because they are from the same epoch, i.e., 

they share a common attribute, or because both were part of 

the same empire, thereby being related by a common place 

hierarchy. Instead of ranking such places or returning 

numerical values for their similarity, one can help the user to 

understand and evaluate the retrieved results by putting them 

into context, e.g., by showing the distribution of all 

geographic features (of a given type) in a semantic search 

space. The visualization of such space draws from the fact that 

humans intuitively understand the analogy between distance 

in visualization space, e.g., a 2D screen space, and semantic 

similarity, although humans have a tendency to over interpret 

some visual patterns (Montello et al. 2003). 

Semantic web technologies have been widely used to 

explicitly encode relationships between different entities in 

knowledge graphs. Although these technologies have been 

identified as promising ways for addressing many 

longstanding problems in GIScience (Kuhn et al. 2014) and 

visualization techniques have been proposed to interact with 

these geographic knowledge graphs (Mai et al. 2016), users 

might feel lost when exploring large graphs. Hence, an 

overview of the distribution of these geographic knowledge 

graphs can provide guidance to the users. The question is how 

to produce such a semantic similarity map in ways that 

resemble familiar cartographic layouts, e.g., by depicting 

clusters as regions (continents). Figure 1 shows such a 

visualization of one specific geographic dataset, namely all 

historic places in the DBpedia dataset. 

 

Figure 1: A map rendering of the similarities among DBpedia 

historic places. 
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Abstract 

Topographic and thematic maps have been extensively used to visualize geographic information and spatial relationships. However, it is 

rather difficult to directly express non-spatial relationships such semantic similarity among features using such maps. Analogies to these 
classical maps are necessary to visualize the distribution of geographic features in a semantic space in which semantically similar entities 

are clusters within the same region and the distance between geographic features represents how similar they are. In this work, we discuss 

one approach for such a semantically enriched geospatial data visualization and searching framework and evaluated it using a subset of 
places from DBpedia. The resulting map, as a representation of the semantic distribution of these geographic features, is produced by using 

multiple techniques including paragraph vector and clustering. Next, an information retrieval (IR) model is developed based on the vector 

embedding of each geographic feature. The results are visualized using the semantic similarity-based map as well as a regular map. We 
believe such visualization can help users to understand latent relationships between geographic features that may otherwise seem unrelated.  
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Using the proposed framework, geographic features can be 

searched and visualized in a semantic space as well as a 

geographic space. Representation learning techniques, e.g., 

Paragraph Vector (Le & Mikolov 2014), are used to encode 

the semantics of each geographic feature into a high-

dimensional real number vector based on its textual 

description. These embeddings of geographic features are 

used in both the semantic visualization and the information 

retrieval model. In order to provide an overview of the 

semantic distribution of geographic features, several analysis 

techniques are applied to these embeddings such as dimension 

reduction, clustering, and concave hull construction. 

 

 

2 Related Work 

As a key to geographic information retrieval, semantic 

similarity has been studied from different perspectives across 

multiple domains and the proposed similarity measures 

depend on different data models. Similarity measures often 

compute the similarity between two concepts based on the 

distance between them in a concept taxonomy or an ontology. 

Ballatore and Bertolotto (Ballatore et al. 2013) extend these 

ideas to geographic domain and compute semantic similarity 

between OpenStreetMap geographic classes based on OSM 

Semantic Network. However, these semantic similarity 

measures typically focus on the type-level similarity. 

In contrast to these top-down approaches, representation 

learning techniques provide another possibility to compute 

semantic similarity in a data-driven way. Popular word 

embedding techniques (Mikolov et al. 2013) compute 

distributional representations of each word and phrase based 

on shallow neural network models. By scanning through 

corpuses and predicting center words from context words, 

high-dimensional embeddings are learned which encode the 

semantics of each word and phrase. The semantic similarity 

between two words can be computed by calculating the cosine 

similarity between corresponding embeddings. Following the 

same idea, paragraph vectors (Le & Mikolov 2014) learn 

fixed dimension distributional representations for variable-

length pieces of texts. Our work is inspired by these 

techniques to learn embeddings of each geographic feature 

based on its textual description. The textual description of 

geographic features can be obtained from their Wikipedia 

pages or gazetteers. In this work, we use the textual 

description of each geographic feature from DBpedia based 

on dbo:abstract and rdfs:comment predicates. Vector 

embeddings for geographic feature types have also recently 

been proposed by Yan et al. (Yan et al. 2017). 

In terms of visualizing the semantic distribution of entities, 

the Cartograph tool (Sen et al. 2017) is a great example. In 

many ways, our work can be seen as a continuation of these 

ideas and spatialization as a visual support method more 

generally (Skupin & Fabrikant 2003). 

 

 

3 Method 

In this section we will explain the methods used to build a 

semantically enriched information retrieval and visualization 

interface for geographic data. Figure 2 shows the workflow. 

As can be seen, the workflow can be divided into four major 

steps: 1) data preprocessing and computation of paragraph 

vectors; 2) establishing the information retrieval model; 3) 

constructing the semantic similarity map from the dataset; and 

4) setting up the visualization and searching interface. The 

most important and interesting step is the map construction 

step. We will explain this step in detail and briefly describe 

the other steps. 

 

Figure 2: The workflow of the semantically enriched 

visualization and retrieval interface. 

 
 

 

3.1 Paragraph Vectors Computing 

We collected all geographic features that belong to the 

dbo:HistoricPlace class from DBpedia as the dataset for our 

experiment. Overall, there are 21010 historic places in 

DBpedia. Each historic place has an abstract, comments, 

images, and geographic coordinates. The Wikipedia page ID 

for each historic place is also stored. The abstracts and 

comments of each entity are combined and treated as the 

description of the current geographic feature. Some textual 

data preprocessing works like tokenization and lemmatization 

are applied to these descriptions. Next, the paragraph vector of 

each historic place is learned based on its descriptions. The 

paragraph vector model is a two-layer neural network which 

learns high-dimensional continuous vectors for each 

document (historical place). The cosine similarity between 

these vectors represents the semantic similarity between the 

corresponding places. Previous work has studied the effect of 

different hyperparameters on the performance of paragraph 

vectors (Le & Mikolov 2014, Sen et al. 2017). We use a grid 

search to determine the optimal parameters and manually set 

the dimension of the paragraph vectors to 300, 10 for the 

window size, and 0.025 for the learning rate. 

 

3.2 Information Retrieval Model 

The information retrieval model is established based on the 

learned embedding of each historic place from the paragraph 
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vector model. Since these high-dimensional embeddings 

encode the terms associated with places (and thus a semantic 

context), the embeddings of semantically similar places will 

cluster in the high-dimensional space and the cosine similarity 

between them will be high. The idea behind our information 

retrieval model is that when the user enters a query, an 

embedding with the same dimension as the entities‘ will be 

dynamically computed based on this query. Then this 

embedding will be used to search for the top 20 nearest entity 

embeddings based on the cosine similarity. The corresponding 

geographic entities will be returned as the search result. 

In this work, we explored three ways to compute an 

embedding from a user‘s query. 

1. The first way utilizes the Doc2Vec.infer_vector() 

function from gensim‘s Doc2Vec package. 

2. The second model computes the embedding of the user 

query as the weighted average of each word token‘s 

embeddings in the query. The weight of each word 

token is computed as its TF-IDF score (term 

frequency-inverse document frequency) based on the 

current corpus which contains the descriptions of all 

DBpedia historic places. 

3. The third model computes the embedding as the simple 

average of the query tokens‘ embeddings after stop 

words removal. 

Based on our experiments, the simplest solution, i.e., the 

third model, gives the best results. For example, when we 

search for ―grave yard‖, the third model will return some 

cemeteries and grave houses as the retrieved results while the 

other two models may also return libraries and other features 

which are not as strongly semantically related to our query. 

Many quantitative evaluation metrics of IR models can be 

used to evaluate these three models such Normalized 

Discounted Cumulative Gain (NDCG). We leave this for 

future work. 

An API1 is provided for the semantic searching functionality 

among DBpedia historic places. 

 

 

3.3 Semantic Similarity Map Construction 

The next interesting research question of our work is how to 

construct an overview of the semantic distribution of 

geographic entities such that it follows a cartographic 

tradition, e.g., clusters semantic similar entities in the same 

region - ‗continent‘, if you like. 

The learned embeddings of places are in a high-dimensional 

space. The first step is to extract semantic structures from 

their semantic distribution in this space. K-means (MacQueen 

et al. 1967) clustering is used to group these high-dimensional 

embeddings into different clusters. As the only parameter of 

k-means, the number of clusters are decided according to the 

silhouette coefficient (Rousseeuw 1987). We experimented 

the number of clusters from 2 to 30. As the number of clusters 

increases, the silhouette coefficient first increases with some 

fluctuations and then decreases after 16. So we decided not to 

try larger number of clusters. The highest silhouette 

coefficient is 0.0525 with 16 as the number of clusters which 

is used to get the final clustering results. In order to 

                                                                 
1
 An example query can be accessed through http://stko-

testing.geog.ucsb.edu:3050/semantic/search?searchText=grave\%20yard. 

understand the meaning associated to each cluster, we 

produced a word cloud for each cluster. The descriptions of 

DBpedia historic places in each cluster are combined and 

treated as one document. For each cluster/document, 10 words 

with the highest TF-IDF score are selected which indicates the 

topics of the current cluster. The ration behind this is that the 

more frequent the current term occurs in the current document 

and the less documents contains this term, the more indicative 

this term is for the current document. According to the top 10 

words of each cluster, cluster names have been assigned to 

these 16 clusters to indicate their thematic scope, e.g., Mill, 

Bridge, Petroglyph, and Museum; see Figure 3. 

 

Figure 3: The pop-up window shows some basic information 

for dbo:Leo_Petroglyph. 

 
In order to visualize the semantic distribution of geographic 

entities in a 2-dimensional space, dimension reduction 

techniques are applied to these high-dimensional embeddings. 

We experiment with different dimension deduction methods 

including PCA and t-SNE. It turns out that t-SNE performs 

best and the clusters derived from k-means are still well 

separated despite the dimensions being reduced from 300 to 2 

while the clusters overlapped with each other in the results 

from PCA. This result aligns well with other work (Maaten & 

Hinton 2008, Sen et al. 2017). 

After we project all the embeddings of geographic entities 

into the 2D space, semantic continents can be constructed 

from the k-means clusters. Although t-SNE produces a good 

dimension reduction result in which many projected features 

are still clustered together, some points are far away from 

their cluster centroids and scattered in the 2D space. Hence, 

we apply DBSCAN (Ester et al. 1996) to each projected k-

means cluster to extract the ―core‖ parts of them. DBSCAN 

has two parameters: Eps and MinPts. Different parameter 

combinations give different definitions of the result clusters. 

So we decide to use the same parameter combination when we 

apply DBSCAN to all 16 k-means clusters‘ points. In terms of 

the criteria for selecting the appropriate parameters for 

DBSCAN, several clustering quality evaluation metrics are 

available (Mai et al. 2018) such as normalized mutual 

information (Strehl & Ghosh 2002) and the rand index (Rand 

1971). These metrics evaluate the clustering results 

extrinsically which means that the ground truth of the 

clustering task should be available to compare it with the 

clustering results. Such kind of ground truth data does not 

exist for many cases such as ours. Hence, we use visual 

interpretation to select a parameter combination for 

DBSCAN, namely 1.1 for Eps and 6 for MinPts. 
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After using DBSCAN to get the core points of each k-means 

clusters, we construct polygons to represent region, here 

semantic continents. A common way to do so would be to 

compute the convex hull of each point set. Using a convex 

hull to approximate the shape of a point cluster may lead to 

large empty space which would not be very adequate for a 

human user. Instead, we use concave hulls by making use of 

the Chi-shape algorithm (Duckham et al. 2008). Chi-shape 

first con- structs a Delaunay triangulation based on the current 

point cluster. The initial boundary is the convex hull of the 

current point cluster. Then it erodes the outside boundary by 

deleting the edges of the boundary in the order of edge length 

until the longest edge of the boundary is shorter than a 

threshold. A normalized length parameter λp ∈ [1, 100] 

controls this threshold and decides the complexity of the final 

constructed hull. In order to get an optimal λp, a fitness score 

function (Akdag et al. 2014) is used to balance the complexity 

and emptiness of the resulting concave hull (See Equation. 1). 

Here φ is the fitness function/score which is used to balance 

the complexity (Brinkhoff et al. 1995) and the emptiness of 

the constructed polygons. P and D represent the derived 

simple polygon and the Delaunay triangulation of the 

corresponding point cluster. 

 

 (   )           (   )                  ( )      (1) 

 

We iterate λp from 1 to 100. For each λp, we compute the 

average fitness score of all point clusters produced by 

DBSCAN among all the 16 k-means clusters. Figure 4 shows 

the average fitness score for different λp. The optimal λp with 

the lowest average fitness score is 30. The semantic continents 

of each k-means cluster are finally constructed by using this 

optimal λp. Note that applying DBSCAN to some k-means 

cluster like USA and Australia will produce more than one 

clusters which will later on result in multiple concave hulls 

(See Figure 1). And the points outside of these concave hulls 

are not noise. They are just not within the major parts of the k-

means clusters they belong to. Please also note that a cluster 

labelled Australia should not be confused with the country and 

its spatial footprint, it is simply a cluster of historical places 

that are similar to each other, e.g., because they are Aboriginal 

sacred sites. 

 

Figure 4: The average fitness score for different λp among all 

DBSCAN clusters. 

 

 

The final semantic similarity map can be seen in Figure 1. 

This map serves as a base map which indicates the locations 

of the search results in the semantic space. We publish this 

map as a web map service in ArcGIS Online2. 

 

 

3.4 Visualization and Retrieval Interface 

We have deployed a web-based user interface3 to showcase 

the functionality using the historical places dataset. Figure 5a 

and 5b shows how this interface visualizes the search result of 

―grave yard‖ in the semantic space and the geographic space. 

Since the semantic similarity map is made in a way that it 

follows the tradition of thematic maps and the same symbol 

style is used to represent the geographic features in both of 

these maps, we believe that the user will have a better 

understanding of the retrieved results by switching back and 

forth between these two visualizations. The retrieved 

geographic features are represented as pin symbols with their 

size being proportional to the similarity score between these 

entities and the user query given by the IR model, while the 

colors of the symbols indicate the k-means cluster 

membership information. In both maps, the results are listed 

in the left side panel in descending order of the similarity 

scores. Clicking on one entity in this list will make both maps 

zoom to the location of this entity and change the symbol to a 

red flag. As shown in Figure 3, when users click on one of the 

symbols on both maps, a pop-up window will show up which 

contains some information about the currently selected entity 

including the name, geographic coordinates, description, an 

image, and the similarity score. 

 

Figure 5: An example to show how the interface visualizes the 

searching results in the semantics space and geographic space: 

(a) searching results in the semantic space; (b) searching 

results in the geographic space. 

 
(a) 

 
(b) 

                                                                 
2
http://www.arcgis.com/home/item.html?id=7e15f98399ff4788a502fd04320

bdafc 
3
 http://stko-testing.geog.ucsb.edu:3050/ 
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From Figure 5a and 5b, some interesting observations can 

be made: 1) by searching for ―grave yard‖, the retrieved 

geographic entities are cemeteries, grave houses, and graves. 

Many of them do not contain the search terms in their names 

like Monfort Cemetery. But all of them are semantically 

similar to the concept ―grave yard‖; 2) In the semantic 

similarity map, almost all the search results are clustered 

within the ―Cemetery‖ semantic region/continent which 

indicates that all retrieved places are within the semantic 

scope of the ―Cemetery‖ cluster and the IR model successfully 

retrieves semantically similar geographic features. 

 

 

4 Conclusion 

In this work, we presented a framework and interface to 

support the interpretation of geographic information retrieval 

results and similarity scores more generally and tested it on a 

subset of places from DBpedia. Our experiments mainly 

focused on studying the different approaches that can be taken 

to reinforce human cognition by visualizing results in a 

semantic and in a geographic space. A lot of work remains to 

be done on the end-user interface level. Similarly, the 

proposed methods have to be calibrated, e.g., by setting the 

hyperparameters, based on results of human participants 

testing. Hence, while a lot of interesting work remains to be 

done in the future, we believe that the presented experiments 

showcase how similarity between geographic features can be 

learned bottom-up and how these similarities can be presented 

to the user. 
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