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1 Introduction 

Land use and land cover (LULC) data provide information 

about the biophysical cover of the Earth surface and related 

human actives. Detailed, harmonised and up-to-date LULC 

maps are a vital input for environmental and socioeconomic 

sciences, as well as for evidence based planning and policy 

targets. In Europe, CORINE Land Cover (CLC) has been 

widely used as the best available harmonised dataset in 

Europe, although not without limitations. In the last decade, 

new Europe-wide geodata sources have surfaced with the 

potential to alleviate some of CLC’s limitations. These 

include public authority sources (such as those from the EU 

Copernicus programme), commercial data providers and 

volunteered geographic information. 

In this article, we aim at improving the knowledge of the 

European LULC both in the spatial and thematic domains by 

integrating a multitude of available geodatasets. The 

motivation is to provide better support for territorial 

modelling of population distribution, land use, transportation,  

environment and their interactions. Given the spatial extent 

and resolution of the data, the work is relevant for models 

constructed at continental, national or regional scales.  

Several efforts to produce refined CLC data by visual 

intrpretation using expanded nomenclature of classes and at 

finer scale have been made mostly at the level of individual 

countires (Hazeu et al. 2016). The HELM project 

(Harmonised European Land Monitoring) has argued for the 

need to integrate, harmonise and increase the resolution 

European land monitoring data. However, the production of 

new datasets was not the goal of the project (Ben-Asher et al. 

2013). 

More closely related works have focused on producing 

spatially (Batista e Silva et al. 2013, Fonte at al. 2017, Pazúr 

& Bolliger 2017) or thematically enhanced data (Jiang et al. 

2015) by fusion of existing LULC datasets with other data 

sources. Alhough, to our knowledge, our work is the first 

attempt targeting both domains and, at the same time, the 

continental extent of the study area. 
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Abstract 

Available Europe-wide data on land use and land cover (LULC) for the year 2012 have been rich and detailed, but fragmented in 

disparate data sets and data types, each having limitations either in spatial detail, thematic detail or coverage. In this study, we try to 

overcome this issue by processing and integrating a considerable volume of diverse data to create a single, ready-to-use data layer covering 
the EU-28 and 11 neighbouring countries at 100 m pixel resolution. Using cartographic (map algebra) and statistical (machine learning) 

techniques we refined the spatial detail from 25 ha down to one hectare and derived seven new LULC classes, while respecting the original 

CORINE nomenclature. Importantly, we decomposed the class ‘Industrial and commercial units’ into ‘Production facilities’, 
‘Commercial/service facilities’ and ‘Public facilities’. The accuracy of the result is overall satisfactory, although we recognised a significant 

confusion between Production and Commercial facilities. Other limitations of the map are discussed and future research avenues are 
proposed. This spatial data fusion exercise fulfilled the objective of creating a dataset better suited to socioeconomic research, such as 

modelling of the human population, economic activity and land use. Immediately, the results are being applied in EU-wide spatio-temporal 

population modelling and LULC projection.  
Keywords: geospatial data integration, land use, land cover, CORINE, classification, random forests 
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2 Methodology 

The methodology consisted of two main parts (Figure 1). 

First, we improved the spatial detail of the original CLC2012 

map from 25 ha down to 1 ha (5 ha for non-artificial classes 

outside of urban areas). The increased spatial detail was a 

prerequisite to subsequent thematic refinement of the artificial 

surfaces by deriving seven additional classes (Table 2). 

 

2.1 Spatial refinement 

The presented approach elaborated on the methodology 

proposed by Batista e Silva et al. (2013) for the production of 

spatially refined 2006 map. However, we introduced several 

updates to maximise the utility of data available for 2012, 

such as the EU Copernicus monothematic high-resolution 

layers (HRL) and an extended set of Urban Atlas (UA) data. 

Another newly included dataset was the European Settlement 

Map (ESM, Ferri et al. 2014). ESM is related to the Global 

Human Settlement Layer (Pesaresi et al. 2016). Both datasets 

detect the share of built-up area per pixel from high resolution 

satellite imagery.  

The spatial refinement relied on a GIS-based synthesis of 

categorical raster, interval raster, and polygon vector data. We 

deployed an automated chain of raster map algebra operations 

at 100 m pixel size on raw datasets (Table 1); vector data were 

pre-rasterised using the maximum combined area method to 

identify the dominant class in each cell. The CLC2012 map 

served as a seamless background which was sequentially 

updated. At each step, the cells either remained unchanged or 

were updated by the overlaid input data layer, following pre-

established decision rules. 

 

Table 1: Inputs and steps of the spatial refinement (simplified)  

Source: Authors. 

 
Input data 

source 
Description of procedure 

Affected 

classes 

1 
CLC change 

maps 

Selected CLC change patches that were not 

included into CLC2012 map due to 

generalisation rules were added. Minimum 

mapping unit (MMU) = 5 ha 

All 

2 

Copernicus 

HRLs (Forest, 

Wetlands, 

Water) 

A threshold of 50% was applied to the pixel 

values (i.e. the respective class must account 

for the majority of the pixel to be considered). 

MMU = 5 ha 

31x, 41, 

51x 

3 

TomTom 

MultiNet  

land use layer 

The polygons were rasterized; a look-up table 

was used to establish the relationship between 

the TomTom and CLC nomenclatures. 

MMU = 1 ha 

121, 122, 

123, 124, 

141, 142 

4 
European 

Settlement Map 

Pixels overlapping non-residential artificial 

classes were excluded, as were the pixels 

under minimum building density threshold 

(empirically derived value of 5%). 

MMU = 1 ha 

11x 

5 
Urban Atlas 

(UA) 2012 

The polygons were rasterized; decision matrix 

(CLC class vs UA class) was used to establish 

the final classification of overlapping pixels. 

MMU = 1 ha 

All 

7 
Linear features 

(roads, rivers) 

The inclusion of linear features observed less 

restrictive thresholds of within-pixel cover to 

preserve the contiguity of these features (given 

their distinct function and importance in 

structuring and fragmenting the territory).  

122, 511 

 

 

2.2 Thematic refinement 

The largest of the artificial classes, urban fabric (UF), 

ensued from the spatial refinement as a heterogeneous mixture 

including settlement types ranging from cities to very low 

density and isolated rural settlements. It comprised two CLC 

urban classes, six UA classes and areas extracted from ESM. 

We split the UF into four consistently defined classes by 

applying ESM-based density intervals: UF dense (>50% built-

up), UF medium density (30-50% built-up), UF low density 

(10-30% built-up), and UF very low density and isolated 

(<10% built-up). 

Further classes were defined representing sport and leisure 

built-up facilities (using ESM) as well as for airport and 

ground transport terminals (using OpenStreetMap polygons). 

The key task was, however, to break down the CLC class 

‘Industrial and commercial units’ (ICU) that also comprises 

public and other facilities. We aimed at untangling it into 

three subclasses, matching broad economic sectors (the 

NACE classification, Eurostat 2008): ‘Production facilities’ 

(sectors ABCDE), ‘Commercial/service facilities’ 

(GHIJKLMN) and ‘Public facilities’ (OPQ). This breakdown 

enables to link the classes to employment and other sectoral 

statistics.  

First, we segmented the ICU pixel-clusters into smaller, 

more homogenous segments by road network. Second, we 

labelled a subset of the segments based on intersection with 

semantically matched ancillary land use data where available. 

For example, the ‘Commercial/service facilities’ were 

matched with OSM polygons tagged as landuse=commercial, 

landuse=retail, building=office, shop=*, amenity=bank 

office=*, and so forth. TomTom land use polygons and a 

Figure 1: Data processing chain 

 
Source: Authors. 
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compilation of (sub)-national land use data for Spain, 

Portugal, Lombardy and Wallonia were similarly used. In the 

end, around one third of the total 740,000 segments obtained a 

label. We used 70% of the labelled segments for training 

while keeping 30% aside for testing of the model.  

Next, we characterised the segments by features (predictor 

variables) obtained through spatial analyses performed on a 

large volume of geodata: millions of points of interest (POI), 

transport infrastructure, population and building density. The 

most important features were those based on the POI, 

separated into three categories corresponding to the target 

ICU subclasses. We measured per category the frequency of 

POIs in the interior, as well as kernel POI density in the 

neighbourhood of each segment. 

We ran multiple instances of random forests classification 

algorithm, while exploratively tuning several 

hyperparameters, including the size of training sample. The 

best fitting model was used to predict the missing labels.  

Finally, we compared the result to an independent, random 

sample of 600 segments, interpreted using street level photos. 

In many cases, there were two or three classes mixed in a 

single segment. Therefore we sharpened the definition of 

ground truth as the perceived dominant group of NACE 

sectors.  

 

3 Results and discussion 

Figure 2 displays examples of CLC2012 (A, C) and the 

integrated map (B, D) in full thematic resolution. The selected 

areas comprise various settlement types from metropolitan to 

dispersed rural ones. The highest level of refinement is 

evident in the urban area. The LULC texture of cities is, in 

reality, more fine-grained compared to exurban/rural areas, 

and UA data captures well this detail. Though, the UA covers 

only the larger urban zones (LUZ) that comprise only ~15% 

of the study area.  

For comparison, west half (approximately) of each transect 

is located outside of LUZ; where only the artificial classes, 

forest, wetlands and water were refined (the latter three only 

at the inferior spatial detail of 5 ha). Despite that, the 

LUZ/non-LUZ dichotomy is not markedly visible, which is an 

important aspect of the map’s cartographic quality 

The employed random forest classification was able to 

correctly predict the reference land use class in over 87% of 

the testing sample (Kappa 0.72). A comparison with the 

independent validation sample has shown that the reference 

labels were noisier than expected (78.5% accuracy, 0.64 

Kappa), when compared to more strictly defined ground truth. 

As a result, the accuracy of the ICU classification in the final 

map was lower too (74%, Kappa 0.53, Table 3), with a high 

omission rate of ‘Commercial/service facilities’ (61% of the 

validation plots from this class were misclassified as 

‘Production facilities’).  

We attribute the high confusion of this class pair to two 

underlying factors: a) discrepancy between the morphological 

and functional (sectoral) notions of the term industrial b) 

actual co-occurrence of industry (‘production facilities’) and 

storage, distribution, logistics and wholesale 

(‘Commercial/service facilities’). On the other hand, the 

‘Public facilities’ attained better accuracy, perhaps thanks to 

less ambiguous semantics (commission error 16%, omission 

error 20%). Importantly, the thematic detail attained at the 

CLC level 4 is always nested in the respective ICU class, thus 

preventing classification errors from propagation to upper 

levels of the nomenclature. 

 

 

 

 

Table 2: The target legend of the artificial classes expanded into fourth level (grey – thematically enhanced classes) 

Source: Authors. 

 

CLC1 CLC2 Level 2 Label CLC3 Level 3 Label CLC4 Level 4 Label 

1 

 

Artificial 
surfaces 

11 Urban fabric 

111 Continuous urban fabric 1111 Urban fabric dense 

112 
Discontinuous  
urban fabric 

1121 Urban fabric medium density  

1122 Urban fabric low density  

1123 Urban fabric very low density / isolated  

12 

Industrial, 

commercial and 
transport units 

121 
Industrial and commercial 

units 

1211 Production facilities 

1212 Commercial/service facilities 

1213 Public facilities 

122 
Road or rail networks and 
associated land 

1221 Road/rail networks and associated land 

1222 Major stations 

123 Port areas 1231 Port areas 

124 Airport areas 
1241 Airport areas 

1242 Airport terminals 

13 
Mines, dumps and 

construction sites 

131 Mineral extraction sites 1311 Mineral extraction sites 

132 Dump sites 1321 Dump sites 

133 Construction sites 1331 Construction sites 

14 
Artificial vegetated 
non-agricultural areas 

141 Green urban areas 1411 Green urban areas 

142 Sport and leisure facilities 
1421 Sport and leisure green 

1422 Sport and leisure built-up 
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Table 3. Error matrix of the ICU classification included in the 

map, compared to an independent sample.  

Source: Authors. 

Overall accuracy: 74.0%  

Cohen’s Kappa: 0.53 

Prediction   

1211 1212 1213 
Total 

reference 

Omission 

error 

R
ef

er
en

ce
 1211 232 16 9 257 9.7% 

1212 73 40 5 118 66.6% 

1213 13 5 73 91 19.8% 

 Total predicted 318 61 87 466 
 

Commission error 27.0% 34.4% 16.1% 
  

 

3.1 Limitations 

Based on visual examination of the results, we recognise 

some limitations that pertain mostly to the spatial refinement 

phase. We combined the input datasets as provided, based on 

mostly automatized processing and decision rules. Apart from 

the ICU class, we did not evaluate the accuracy of the map 

systematically. Here it needs to be noted that the increase of 

spatial and thematic detail does not imply that increase in 

classification accuracy compared to CLC2012 was achieved.  

Nevertheless, the resulting map inherits classification 

accuracy of the respective input dataset and a large majority 

of the map relies on input data with documented quality (UA, 

CLC, HRLs, and ESM).  

Some errors might have arisen from the applied decision 

rules. Extracting urban fabric from the ESM at 5% threshold 

performed well in selected test-sites, but there might be no 

single universal optimum. For instance, arid ecoregions may 

have positively offset ESM values due to sparse vegetation 

(leading to prevalent commission errors at the given 

threshold), while in different ecoregions the opposite might 

hold true. 

In multiple stages of the methodology, we assumed a 

semantic link between categories in input data and CLC 

nomenclature. The CLC definitions (Bossard et al. 2000) are 

very specific and oriented towards visual interpretation of 

texture and context in medium resolution imagery. Such 

Figure 2: Comparison of original CLC (A, C) and the final result (B, D). A and B show Vienna with hinterland, C and D show 

Stockholm with hinterland).  

 
Source: Authors. 
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definitions are difficult to be closely imitated using other 

methods. For instance, it contains a group of heterogeneous 

agricultural classes, whose meaning starts to erode with the 

increasing spatial resolution. Therefore the link between 

various notions of LULC classes is not always exact, but a 

plausible solution can be achieved. Generally, the likelihood 

of confusion is higher among semantically similar classes 

(e.g. subclasses of the same level 2 class). 

 

 

3.2 Further research 

Introducing the UA and TomTom data significantly 

increased the average levels of spatial detail, but also reduced 

the spatial consistency. UA covers only the LUZ areas, and 

TM completeness varies across countries. OpenStreetMap 

(OSM) polygon data could be leveraged to reduce these gaps. 

Literature suggests that despite being collected by volunteers, 

OSM data have a great value for LULC analysis (Dorn, 

Törnros & Zipf 2015) and that producing LULC maps from 

OSM is worthwhile (Fonte et al. 2017, Schultz et al. 2017). 

Our experience was similar – the data proved to be valuable 

for training of the machine learning model and the mapping of 

transport terminals.  

Additionally, deriving a more detailed classification of 

economic activities would be useful for addressing several 

policy relevant topics. Due to the mixed patterns, delineation 

of narrower sectors might require either finer segmentation of 

the target of the ICU areas, per-pixel classification or data on 

the dominance ratio per each sector using an alternative data 

model instead of the categorical raster dataset. 

 

4 Conclusion 

European data on land use/land cover for the year 2012 have 

been either insufficiently detailed (CLC), patchy in coverage 

(UA, TomTom), or thematically restricted (ESM, HRLs). To 

increase the spatial resolution, we integrated several more 

detailed datasets with CLC using the refinement approach of 

Batista e Silva et al. (2013) adapted for the currently available 

data. The thematic refinement of ICU presents an 

experimental method, supported by a comprehensive data on 

economic activities in POI form (for explanatory variables) 

and ancillary land use polygons (for model training and 

testing). The employed random forests model performed with 

good overall accuracy, although per-class accuracy varied. 

Both user’s and producer’s accuracy for ‘Public facilities’ 

exceeded 80%, on the other hand there was high omission rate 

of ‘Commercial/service facilities’ that were more often than 

not classified as ‘Production facilities’. Nevertheless, the 

resulting integrated continental-scale layer overcomes several 

shortcomings of its constituent datasets. It will become a 

publicly available asset with a potential to underpin diverse 

research in topics and at scales that are relevant for policy 

makers. Currently, it is being used as one of ancillary layers 

supporting fine-resolution spatiotemporal modelling of the 

EU’s population distribution in the ENACT project (Batista e 

Silva et al. 2018) as well as in European-scale territorial 

modelling platform LUISA (Jacobs-Crisioni et al. 2017). 

 

Disclaimer 

The views expressed are purely those of the authors and may 

not in any circumstances be regarded as stating an official 

position of the European Commission. 
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