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1 Introduction 

Active modes of transport such as walking, bicycling, and 

jogging contribute to reduced risk of physical and mental 

health problems (Physical Activity Guidelines Advisory 

Committee 2008). A physically active lifestyle is particularly 

paramount for healthy aging, as it is associated with higher 

levels of functional health, a lower risk of falling, and better 

cognitive function (Voss et al. 2016). Physical activity (PA) is 

defined as any bodily movement produced by skeletal muscles 

that results in energy expenditure (Caspersen et al. 1985). PA 

is a complex behaviour with four main measures, which can 

be abbreviated as FITT:  Frequency, Intensity, Time and Type 

of activity (Cavill et al. 2006) .  
Most of the sensor-based methods for PA rely on the level 

(also called intensity) of the activity. The exclusive focus on 

PA level can be problematic (Rosenberg et al. 2017). Being  

able to recommend that people and particularly older adults 

increase the time they spend walking is much easier to control 

individually than recommending a certain level of activity 

intensity, a concept that most laypersons are likely unable to 

clearly understand. Moreover, once the type of activity is 

classified other features such as the time duration of activity 

and its frequency over the day or week can be estimated 

(Lindemann et al. 2014). Accurate measurement of the 

physical activity behaviour type during everyday living 

independently of, and in addition to, other PA measures is 

therefore important.  

Existing sensor-based studies of PA are somehow 

incomparable with each other, particularly due to considerable 

variation in environmental and conceptual factors under which 

the studies were conducted. Using different study designs and 

training data collection protocols is one of the examples of 

this problem. Most of the sensor-based methods for PA 

recognition are based on accelerometer data from a limited 

number of laboratory activities (controlled condition) 

performed by young participants. Using this approach, 

participants are asked to follow a standardized protocol with a 

fixed order of instructions. Therefore, it is questionable 

whether laboratory-derived algorithms and models can be 

reproducible in real-life situations (De Vries et al. 2011) and 

for other age groups.  Haché et al. indicate that monitoring the 

mobility outside a clinical setting is important because 

mobility in the real world typically differs from the mobility 

measured in the clinic (Haché et al. 2011).  Studies of real-life 
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A physically active lifestyle is a key component of promoting health and well-being particularly for healthy ageing. Most sensor-based 

studies are focused on measuring the level (or intensity) of physical activity and use data collected using a specific study protocol under a 
controlled laboratory condition and are thus hardly comparable to each other and difficult to use as training or validation data for real-life 

studies. Therefore, it is important to have available a reference dataset for physical activity type classification especially in real-life 

environments. The main aim of this study is to provide a study design for collecting a reference dataset that can maximize both internal and 
ecological validity of measuring physical activity types. To that end, we designed study protocols in three different conditions, namely: 

laboratory/controlled, semi-structured and real life. To collect data, a sample of 40 healthy participants (30 younger adults and 10 older 
adults) will participate to perform activities including: lying, sitting, standing, walking on level ground, running, cycling, walking uphill, 

walking downhill, walking downstairs and walking upstairs both indoors and outdoors. The activity walking on level ground will be 

performed at three different speeds. Additionally, GPS and GIS methods (e.g. information about slope or dominant land use) will be used to 
enrich the detailed information about accelerometry-based activity types and to provide the environmental information of the place where 

the activities will take place. The proposed reference dataset can be useful for future validation and comparison studies and for the 

development of new physical activity type classifications algorithms particularly under real-life conditions.  
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activity are then needed to improve the ecological validity of 

lab-based methods.       

Combining laboratory and real-life data to develop 

classification models and considering the concepts of ―real 

life‖ and ―controlled condition‖ on a relative scale are 

proposed as  potential solutions for improving classifiers in 

real-life data (Vincent Hees et al. 2013; Gyllensten & Bonomi 

2011). Activities can be carried also out in a semi-structured 

protocol. Using this protocol to simulate real life, participants 

are free to perform required activities in their own way, for 

example at their comfortable speed or in an outdoor area.  

Data gathered solely with an accelerometer do not provide 

information about mobility in different environments. For 

example, without additional information it is impossible to 

determine where the activities were undertaken (e.g., indoors 

or outdoors). Ecological approaches to health and behavior 

have long held that place matters for health (Jankowska et al. 

2015).Outdoor physical activity can have important benefits 

for health, particularly in older adults and in children. Thus, to 

improve health outcomes it is critical to accurately measure 

physical activity and sedentary time spent in- and outdoors 

(Rosli et al. 2013).  
Many studies have examined the relationship between PA 

and characteristics of the built environment, such as green 

spaces or walkability based on neighborhood areas using GIS. 

Using Global Positioning System (GPS) and advanced GIS 

methods has the potential for enhancing our understanding of 

the association between sensor-based measured PA and 

physical and social environments (Lee & Kwan 2018). A 

valuable tool for improving the assessment of physical 

activity utilizes GPS (Maddison & Ni Mhurchu 2009).  The 

addition of GPS data to accelerometer monitoring can provide 

more detailed information about activity types under real-life 

conditions, particularly in detecting activities e.g. with similar 

accelerometer profiles, but different speed profiles (Troped et 

al. 2008) or in determining elevation changes (Nguyen et al. 

2013). Using GPS particularly in real-life protocols provides 

greater insight into the nature of activity with both location 

and activity information available.  

Recently, researchers tried to provide a framework for 

standardizing  the study of  sensor-based activity monitoring 

in older persons (Lindemann et al. 2014) or produce a 

reference dataset for that purpose (Bourke et al. 2017). In this 

following study, by considering different age groups, the aim 

is to provide a preliminary design for collecting a reference 

dataset for PA type classification that can maximize both 

internal and ecological validity. To do so, we introduce 

activity protocols in three different conditions: laboratory, 

semi-structured and real life and in both indoor and outdoor 

environment. We also propose using GPS to provide more 

detailed information about activity types and the place they 

are taken. We believe that this dataset will be useful for 

validation of existing activity classifiers and the training and 

development of new PA type classification algorithms, 

particularly under real-life conditions.  

 

2 Method 

We aim to provide a reference data set for classifying PA 

types in real life considering different age group and different 

environment. To maximize both internal and ecological 

validity, we designed protocols in three different conditions, 

namely: laboratory, semi-structured and real life. 

2.1 Participants 

To cover different age groups in the study, a sample of 40 

participants including 30 young adults ranging in age from 20 

to 35 and 10 older adults above 65 years old (20 male, 20 

female) will be recruited. As inclusion criteria, participants 

are required to be healthy and be able to walk and run without 

walking aids, be able to cycle and accept the instructions of 

the study protocol. Approval by the appropriate ethics 

committee is pending; participants will also have to provide 

written informed consent.  

2.2 Device description  

To collect data, we use a smartphone (Motorola Moto E, 2nd 

gen) and a wearable customized device called uTrail (Bereuter 

et al. 2016). The smartphone includes a GPS and an 

accelerometer with 1 Hz and 200 Hz maximum sampling 

rates, respectively. The uTrail device includes an audio 

sensor, a GPS (uBlox UC530M) and an accelerometer (ST 

Microelectronics LSM303D) that includes 3 magnetic field 

channels and 3 acceleration channels. The GPS can record 

data at 1 Hz and has the ability of concurrent reception of up 

to 3 GNSS (GPS, Galileo, GLONASS, and BeiDou). The 

accelerometer of both devices will be set to 50 Hz continuous 

sampling rate. 

 

2.3 Device placement 

The most popular sensor device placement is on the waist 

because it is near the center of the trunk and can better 

represent human movement (Liao et al. 2015). Findings shows 

that wearing the device on the thigh and chest can help to 

discriminate between sedentary PA types such as sitting and 

standing (Skotte et al. 2014) and  sitting/standing vs. lying  (el 

Achkar et al. 2016), respectively. The participants will be 

asked to wear the smartphone in their right pocket and to wear 

the uTrail device at different body placements including: right 
and left hip, left pocket and chest, (Fig. 1). 

 

 

 

 

 

 

 

 

 

2.4 Physical activity selection 

 

The International Classification of Functioning, Disability and 

Health (ICF) is a framework for describing and organizing 

Figure 1: Device placement 
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information on functioning and disability (World Health 

Organization 2001).The target PAs in this study including: 

lying, sitting, standing, walking on level ground, running, 

cycling, walking uphill, walking downhill, walking 

downstairs and walking upstairs were chosen by considering a 

subset of: 1) simple physical activities classified by (Spinsante 

et al. 2016), 2) mobility-related activities of the ICF, 3) global 

body motion activities classified by  (Cornacchia et al. 2017) , 

4) activities that are commonly performed in everyday life 

(Skotte et al. 2014) and 5) activities that can cover different 

levels/intensities of PA. 

 

2.5 Laboratory scenario 

The study protocol will be performed in a sports centre and at 

a six-floor building at the University. 

The activities for laboratory/controlled condition protocol is 

described in Table 1. First, participants will lie on a bed. It 

means staying in a lying position (face down or face upwards 

or side-lying) for at least 1 minute (min). Then, they will sit 

and will stay in a seated position for 1 min, on a seat or the 

floor, such as when sitting at a desk or table with straight legs 

or cross-legged, with feet supported or unsupported. After 

that, they will stay in a standing position for 1 min, such as 

when standing in a queue. For walking and running, the 

participants will be asked to move along a treadmill on foot. 

The cycling activity will be performed on a cycle ergometer. 

Walking on level ground should be performed at three 

different speeds including slow (less than 3 km/h), normal (4 

km/h) and fast speed (6 km/h). Walking uphill and walking 

downhill will be performed on 7 % to 9% slope and –7% to –

9% slope, at normal speed, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For stairs walking, a 6-floor building with stairs will be 

used, (Fig. 2). A short break of 30 seconds to 1 minute is 

inserted in the data collection protocol after each of the 

activities, so that activities would not be affected by the 

previously performed activities.  The numbers for the speeds 

and slopes are adopted from (Nguyen et al. 2013; Reiss & 

Stricker 2011).   

 

 

 

 

 

The activity tasks will be labelled by direct observation and 

video recording. An observer will monitor each participant 

during the study protocol and record the start and end time of 

each activity using a stopwatch. A video camera will record 

each participant’s performance.  

 

2.6 Semi-structured scenario 

The activity tasks described in Table 2 will be used for the 

semi-structured scenario. A total of 15 mins of data will be 

collected for each person. Participants will be asked to 

perform the activities outdoors. A large flat area of the 

University campus will be used for outdoor walking, running 

and cycling, (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Semi-structured protocol 

Activity  Time (in minute)  

Total time:15 mins 

Walking, level ground (3 self-speeds) 4 

Walking uphill  (normal self-speed) 2 

Walking downhill (normal self-speed) 2 

Running, level ground  2 

Cycling, level ground  1 

Walking downstairs 2 

Walking upstairs 2 

 
Figure 3: Outdoor area 

 

Table 1: Laboratory protocol 

Activity  Time (in minute) 

Total time:21 mins 

Lying   1 

Sitting  1 

Standing  1 

Walking, level ground (3 speeds) 6 

Walking uphill  (normal speed) 2 

Walking downhill (normal speed) 2 

Running, level ground  2 

Cycling, level ground  2 

Walking downstairs 2 

Walking upstairs 2 

 

Figure 2: A 6-floor building for stairs walking 
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Figure 5: A sloping area on the University campus 

 

The stairs in a park immediately adjacent to the University 

campus will be used for outdoors stairs walking, (Fig. 4). 

 

The uphill and downhill activities will be performed at a 

sloping area near the University campus at participants’ 

normal speed, (Fig. 5). 

 

To be able to compare the participants’ performance of the 

activities walking, running and cycling on level ground in a 

semi-structured protocol with the performance in both lab-

based and real-life protocols, there is a need to have a scenario 

that can simulate human movement in both conditions. In a 

laboratory, participants are walking/running/cycling on a 

straight line, while in real-life conditions, more turns and 

stops may happen. Figure 6 schematically shows the path 

which is designed for walking and running activities in the 

semi-structured scenario. The path includes five segments. 

Participants will start walking straight at their own normal 

speed for 45 seconds from the starting point while stopping 

for 2 seconds at each stop point. Then, after passing the first 

turning point they will continue walking at their own slow 

speed for 1 minute. Immediately after visiting the second 

turning point they will change their speed from slow to the 

normal speed and walk for 45 seconds. They will be asked to 

walk at their fast speed on the fourth segment for less than 30 

seconds. Finally, they will finish the path by walking at their 

normal speed on the last segment for 45 seconds. The activity 

running will be performed in the same way but only at the 

participant’s comfortable speed for each segment for 2 mins. 
 

 

 

 

 

 

 

As it is difficult to make sharp turns during cycling, another 

path was designed for the cycling activity in the semi-

structured scenario (Fig. 7). The path includes three segments. 

Participants will start cycling straight at their own normal 

speed for 20 seconds from the starting point while 

decelerating their speed at the decelerating point. Then, they 

will continue cycling on the second and third segments for 40 

seconds. Finally, they will stop at the end point to finish the 

track.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct observation and video tracking will be applied for 

activity annotation. A GPS sensor will also record the location 

data of outdoors activities and will be used for activity 

labelling.  

 

2.7 Real life scenario  

Participants will be asked to include the activity tasks 

described in Table 2 and Section 2.6 in their daily life both 

indoors (e.g., home, shopping center etc.) and in an outdoors 

environment for 24 hours in a random order. Each activity 

task should meet the required minimum time duration 

described in Table 2. 

 To label the real-life data, participants are asked to record 

the start and end time of each activity using an application 

installed on the smartphone. A wearable camera may be 

further be used for real-life reference data collection. 

 

 

 

 

Figure 6: The planned path for the semi-structured 

protocol, walking and running 

 

Figure 7: The planned path for the semi-structured 

protocol, cycling 

 

Figure 4: The area for outdoor stairs walking 
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3 Discussion and conclusion 

Recent technologies are moving toward approaches, which 

can allow for greater insight and accuracy in exploring 

relationships between place and health. To be able to begin 

analyzing specific health behaviors in time and place and to 

move beyond total PA intensity, incorporating GPS data with 

accelerometer can help. For PA research, using GPS offers a 

technological solution to linking accelerometer-based 

measures of PA to locations. These data can then be 

represented within a GIS (Jankowska et al. 2015). 

In this short paper, we proposed a study design for 

collecting reference data for PA type classification in three 

different scenarios. In PA research, using GPS and GIS 

methods can provide greater insight into the nature of physical 

activity in different environments, including more realistic 

settings than are commonly used (i.e. leaving the lab setting). 

The ongoing data collection can provide a useful dataset for 

the future validation and comparison studies on using 

different study designs and applying different classifiers for 

PA type classification, particularly in real life. Furthermore, 

we expect to be able to demonstrate that adding GPS (i.e. 

absolute location) will improve the PA type classification in 

real-life situations.  

As next steps, the proposed study protocol will be tested in a 

pilot study on 5 participants and potentially optimized. The 

finalized study protocol will then be administered in the main 

study on 40 participants, and the detailed study protocol as 

well as the annotated reference data set will be made available 

publically. 
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