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1 Introduction 

Standards for services and metadata have improved 

tremendously over the past decade, giving cartographers 

powerful tools to publish maps and geographic information 

online in ways that are interoperable and discoverable. 

However, only a fraction of all maps made available online 

adhere to such standards. Many maps today are made by 

“neocartographers” (Cartwright, 2012), amateurs or 

professionals from outside the geosciences  who are not aware 

of the established standards or  have little incentive to adhere 

to them. Some of the innovative experiments in interactive 

cartography and geovisualization today come from such actors 

– programmers, designers or journalists – and may in format, 

technique or creativity go beyond what current map 

publishing standards can cover. Also, commercial actors may 

have the resources to drive innovation in online maps, but are 

not always incentivised to publish their maps using open and 

interoperable standards – their strategic interest lies in driving 

and keeping traffic to their own sites and solutions. 

From the point of view of standardization, there exist two 

fundamental “camps” of online geographic information: those 

who adhere to public standards for data and metadata, and can 

therefore be linked, mixed and aggregated, and those who do 

not, and are therefore destined to remain separate, inaccessible 

to any standards-based approach for retrieval and aggregation. 

The only way to move into the former camp is to publish the 

information in the required format. However, as has been 

pointed out, this is not always possible for the involved actors, 

or maybe even not in their perceived best interest. Even with 

intensive lobbying for standards, parts of the geoweb will 

remain proprietary or informal if we rely on publishers of data 

and maps to provide suitable metadata. 

A potential solution is to have the metadata for a map or 

dataset (such as: map extent, spatial reference systems and 

projections used, symbology specification etc.), assigned by 

third parties. For example, a map can be analysed by a human 

expert, possibly with the assistance of technical tools, to 

reconstruct its projection (Jenny & Hurni, 2011; Bayer, 2014) 

or symbology. Appropriate metadata would be defined in 

standards such the OGC specifications for Web Map Services 

(WMS) or the Symbology Encoding specification (Bocher & 

Ertz, 2018).  This information can be assigned to the map and 

then be published, allowing the creation of, for example, web 

map services for historical maps, although the original creator 

of the map has not provided the required metadata herself – it 

has been assigned, manually, by an external actor. 

While such detailed manual inspection of geographic 

artefacts may be feasible for corpora of historical maps and 

small numbers of artefacts of specific scientific or cultural 

interest, it is certainly not an approach that scales up to the 

volume of maps published on the web in general. What would 

be needed are automatic approaches that can assign semantics 

to informally published geographic information, to make that 

information interoperable with standards-based 

infrastructures. 

 

2 Related work and overview of proposed 

approach 

The need for reconstructing metadata for maps, especially 

historic maps, is not new. Often, the map is all that is 

available to an investigator, and documentation about the 

processes of its creation is not accessible or does not exist. 

Therefore, existing tools for cartographic analysis focus on 

manual or semi-automatic approaches to reconstruct the 

projection parameters from the map image. Both the 
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detectproj (Bayer, 2014) and the MapAnalyst (Jenny & Hurni, 

2011) tools work by having a human operator place control 

points on (scanned) map images, in order to reconstruct their 

cartographic projection. 

A potentially fully automatic retrieval of projection 

parameters for shapefiles with missing or wrong projection 

metadata is presented by Egger  (2016). In Egger’s approach, 

the point correspondences are automatically retrieved based 

on matching place names in the shape files. The tool is 

therefore limited to shape files covering overlapping 

geographic regions and containing the necessary 

administrative units. 

Few projects deal with automated metadata reconstruction 

beyond projection analysis. An ongoing software project, 

Rainbowbot (Niccoli, 2016), sets as its goal to automatically 

detect maps which use a “rainbow” color scheme. It is unclear 

whether the software is operational and works satisfactorily, 

as no results or other details have been published so far. 

In the wider field of information visualization, Poco and 

Heer (2017) apply computer vision and machine learning 

algorithms to retrieve the visualization parameters of simple 

chart images. It remains unclear whether such a purely image-

based approach could work with considerably more complex 

and less constrained visualizations such as maps. 

All these approaches, except Egger’s, have in common that 

they focus on trying to infer properties of the transformations 

used to create a map or visualization solely from the resulting 

image. Egger presents a fully automatic approach, which is 

very limited in its domain (assigning point correspondences) 

and works only on input data requiring very specific 

properties. 

 

An approach entirely different from image-based or data-

based methods is presented in this paper. Many maps are 

posted online not as static images, but as JavaScript program 

code that recreates the map image from geospatial data. The 

key idea of the research presented here is to use the program 

code of the map to analyse the transformational processes 

applied to the data to yield the map image, and to infer 

cartographic metadata from such an analysis. 

Program code follows a strict syntax, and is therefore free of 

the ambiguities of human language. However, reasoning over 

the computational semantics of a given program, sometimes 

called static analysis, is provably limited – “most questions 

about the behaviour of a program are undecidable or 

infeasible to compute” (D’silva, Kroening, & Weissenbacher, 

2008). While for strongly typed languages like Java, C++ or 

Haskell, it is possible to successfully employ static analysis 

techniques to answer a range of specific questions about the 

behaviour of a program (Nielson, Nielson, & Hankin, 1999; 

Ayewah, Penix, Morgenthaler, Pugh, & Hovemeyer, 2008), 

for loosely typed scripting languages like JavaScript, static 

analysis is further impeded by the properties of the language 

(see Jensen, Møller, & Thiemann (2009) for a discussion of 

the specific difficulties of static analysis of JavaScript 

programs). On the web, programs to be run in the browser are 

necessarily delivered in JavaScript, so these limitations further 

impede the successful application of static analysis techniques 

to gain insight into the cartographic properties of web maps. 

An alternative approach for manual analysis of cartographic 

code by “close reading” has been presented at AGILE 2016 

(Ledermann, 2016), but the manual study of cartographic code 

is prohibitively labour-intensive to be employed on a larger 

scale. 

In the light of these theoretical limitations and practical 

difficulties, instead of trying to directly infer the 

transformations applied by a given cartographic program from 

static analysis of its source code, this project investigates a 

different approach: the dynamic analysis of the program’s 

behaviour, meaning: running the program while 

simultaneously observing and recording every step of the 

program for later investigation. 

 

3 Analyzing cartographic transformations 

using runtime program analysis 

Several options were evaluated for doing such a “play and 

record” session of cartographic programs in a potentially 

automated manner, including creating a custom JavaScript 

interpreter or tapping into the debugging interface of modern 

web browsers. The requirements were best met by using the 

Jalangi framework for code instrumentation and dynamic 

analysis (Sen, Kalasapur, Brutch, & Gibbs, 2013). Jalangi 

provides a transpiler for JavaScript that wraps every operation 

of a given program in additional code that provides hooks to 

trace calculations, variable changes, conditionals etc. 

throughout the run of the program (see Figure 1 for an 

example of source code instrumented with Jalangi). 

A custom analysis module has been implemented that uses 

Jalangi to trace all mathematical operations performed by the 

scripts on a web page. This allows us to reconstruct the data 

flow graph for all variables of the script and, ultimately, the 

program’s visual output. 

Figure 1 shows a simple example of such automated 

reconstruction of a value’s data flow graph. A line of 

JavaScript code, containing a simple calculation (1a), is 

transpiled by Jalangi to instrumented code of equivalent 

functionality, containing the hooks mentioned above to track 

each operation (1b). Our analysis module connects to Jalangi 

to reconstruct the data flow graph (1c) and associates it with 

the variable. 

 

Figure 1: A simple line of code, analysed with Jalangi. Part (a) shows 
the original code, (b) the instrumented source code produced by 

Jalangi, and (c) the data flow graph extracted with our module. 

(Part (b) simplified for illustration purposes) 

A sufficiently educated observer will be able to guess what 

the line of code shown in Figure 1a represents: a conversion 

of input value a from degrees to radians! While in this simple 

example, the semantics of the calculation can still be directly 

inferred by reading the source code, for more complex 

transformations, the number of possible syntactic variations of 
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expressing the underlying calculations makes a direct static 

analysis of the code impossible (as has been pointed out 

above). The data flow graph, however, contains a 

representation of the transformation’s computational 

semantics which is much more robust to syntactic and 

structural variations of the underlying implementation. 

Because the data flow graph is also available as a machine-

processable data structure, automated methods can be applied 

to identify patterns in the graph. 

Once such transformational patterns are identified, this 

information can be used to assign additional semantics to 

otherwise generic values in the program. Having access to the 

data flow graph, our system would, in the example presented 

in Figure 1, not only know the value and basic type of the 

variable val, but can with reasonable certainty assume that, 

because of the identified transformational pattern, the value 

represents an angle in radians that has been converted from a 

degree value! 

 Again, the simple example of identifying a degrees-to-

radians conversion served to illustrate the proposed method 

and could easily be replicated with alternative methods. But 

once the complete data flow graph of each value in the 

program is available, one can attempt to identify more 

complex transformational patterns: different cartographic 

projections, geometric transformations, classification, 

calculation of visual variables (line width, dot size etc.) and 

classes of generalization algorithms, which may all be applied 

in the program. We are currently in the process of building 

such a library of cartographic transformation patterns for 

detection in the extracted graphs. 

Figure 2 presents a simple real-world cartographic example. 

In the transformation graph of a value used as the y-

coordinate of a plotted point, three transformation patterns 

could be identified by our system: a degree-to-radians 

conversion applied on the first entry of a coordinate array, 

followed by a sequence of calculations characteristic for the 

Mercator projection, followed by an affine transformation 

(translation and scale) to yield the plotted screen coordinate. 

The patterns and the values of their nodes can be used to 

unambiguously reconstruct the parameters of the spatial 

transformation from geographic datum to screen. 

 

The instrumented source code provides access to the data flow 

graphs of all variables used in the program, no matter whether 

they are ever involved in creating visual output. For example, 

a program may pre-compute a range of values using different 

cartographic projections without ever using them to actually 

render a map. In this case, the transformation patterns of these 

projections would be identified in the overall data flow graph, 

although they are not contributing to the actual output of the 

program. To capture only those transformations relevant for 

the cartographic output, the variables involved in actually 

generating such output must be identified. 

In a browser environment, to create any visual output, a 

script invokes some method(s) of the browsers APIs (since no 

direct access to operating system methods is permitted). To 

capture the relevant operations, our system augments all 

methods of the browser APIs that actually generate visual 

output with additional code to capture the previously 

generated data flow graphs of the methods’ parameters and 

stores them for subsequent analysis. Modern browsers provide 

a plethora of API methods to modify the contents on a page: 

scripts can create HTML or SVG elements dynamically, 

modify the attributes of existing elements, use the canvas API 

to dispatch drawing operations etc. – we so far identified a 

total of 128 methods in the Chrome browser API that need to 

be captured to cover the various options. 

With such a capturing layer in place, the system can be run 

in a fully autonomous way to analyse the transformational 

processes of maps on the web. A “headless” version of the 

chrome browser is controlled by a script to load the pages and 

run the analysis scripts. Pages are loaded through a proxy 

server that instruments each page’s JavaScript code in real 

time using Jalangi and injects the API capturing scripts. The 

headless browser loads the page, runs all code on the page 

(including the instrumentation and capturing) and stores a 

screenshot of the page and the data flow graphs of all output 

operations in a database. Analysis scripts can then be run 

offline on this database of captured visual output and 

associated transformations. Figure 3 gives an overview of the 

complete technical setup. 

 

4 Discussion and outlook 

To this author’s knowledge, the presented method for runtime 

analysis of cartographic programs is the first system that 

supports the fully automatic reconstruction of cartographic 

transformations from program code and extraction of 

metadata by analysing the transformation patterns employed. 

It is therefore hoped that it may contribute to connecting the 

proprietary and informal parts of online geoinformation to 

standards-based infrastructures. One of the strengths of the 

proposed method is that it works independent of different 

coding styles, APIs used or even code obfuscation, allowing 

for the analysis of a wide range of real-world cartographic 

programs. 

 

Figure 2: Data flow graph of the value “346.74” used as the y-coordinate of a plotted point (rightmost node). The proposed system 

identifies a chain of transformations in the data flow graph, involving conversion to radians, cartographic projection using the 
Mercator projection, and an affine transformation to screen space. This information can be provided as metadata for the map. 
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The proposed method requires access to the program code 

performing the cartographic transformations, which is not 

always available. Many maps are simply loaded as images, or 

rendered completely on the server, out of reach for code 

analysis. For such maps, other methods of analysis, such as 

those discussed in section 2, need to be used. However, 

current trends in web mapping lead to more and more maps 

being rendered in the browser: the desire to provide fully 

interactive maps, reacting in real time to the users actions and 

context; the evolution from web mapping to web GIS 

solutions, providing entire GIS pipelines in the browser; and 

the technical advantages of delivering raw data instead of map 

images to the client, for example in the form of vector tiles. 

We are hopeful that in the face of these developments, the 

proposed method will be of increased relevance to 

cartographic analysis in the near future. (Note, however, that 

there may be additional ethical and legal concerns to be 

considered before applying such reverse engineering 

techniques to third-party software!) 

 Mathematical transformations can appear in the data flow 

graph in various forms (for example, when converting from 

degrees to radians, one may perform the multiplication or, 

alternatively, the division first). Our system currently uses a 

fixed set of alternative patterns for detecting such 

permutations. In the future, it is planned to look into 

algorithms for normalizing the mathematical operations 

represented in the graph by analytical methods (e.g. see 

Shatnawi & Youssef (2007)) for more robust pattern 

identification. 

Even in a normalized graph, an amount of uncertainty about 

the precise semantics of mathematical operations must 

remain. Multiplying by π and dividing by 180 would usually 

indicate a conversion from degrees to radians, but maybe this 

sequence of calculations could occur in a different context as 

well. The reliability of our approach of matching 

transformational patterns against the data flow graph has to be 

verified against real-world corpora of cartographic programs 

to see if this is an issue of wider relevance.  

 

Going forward we can envision innovative applications for the 

proposed method of connecting the informal and the 

standards-based geoweb. The automatic system sketched out 

would allow the construction of a cartographic search engine, 

allowing users to retrieve online maps according to 

cartographic search concepts (projection, symbology, 

classification etc.). The screenshots captured by the system, 

together with the extracted metadata, would even allow to 

provide screenshots of web maps as a Web Map Service 

(WMS) to browse the collected maps in a standardized way. 

On a smaller scale, an application for cartographic analysis 

could be envisioned to support experts or inform novices 

about the cartographic principles at work in individual maps. 

The engineering methods presented here are not limited to 

JavaScript or web technologies in principle. Similar 

approaches could be applied in other technological contexts, 

such as server software or even historic examples of 

cartographic programs, to isolate, preserve and study the 

transformations applied. 
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