
1

1 Introduction

Standards for services and metadata have improved

tremendously over the past decade, giving cartographers

powerful tools to publish maps and geographic information

online in ways that are interoperable and discoverable.

However, only a fraction of all maps made available online

adhere to such standards. Many maps today are made by

“neocartographers” (Cartwright, 2012), amateurs or

professionals from outside the geosciences who are not aware

of the established standards or have little incentive to adhere

to them. Some of the innovative experiments in interactive

cartography and geovisualization today come from such actors

– programmers, designers or journalists – and may in format,

technique or creativity go beyond what current map

publishing standards can cover. Also, commercial actors may

have the resources to drive innovation in online maps, but are

not always incentivised to publish their maps using open and

interoperable standards – their strategic interest lies in driving

and keeping traffic to their own sites and solutions.

From the point of view of standardization, there exist two

fundamental “camps” of online geographic information: those

who adhere to public standards for data and metadata, and can

therefore be linked, mixed and aggregated, and those who do

not, and are therefore destined to remain separate, inaccessible

to any standards-based approach for retrieval and aggregation.

The only way to move into the former camp is to publish the

information in the required format. However, as has been

pointed out, this is not always possible for the involved actors,

or maybe even not in their perceived best interest. Even with

intensive lobbying for standards, parts of the geoweb will

remain proprietary or informal if we rely on publishers of data

and maps to provide suitable metadata.

A potential solution is to have the metadata for a map or

dataset (such as: map extent, spatial reference systems and

projections used, symbology specification etc.), assigned by

third parties. For example, a map can be analysed by a human

expert, possibly with the assistance of technical tools, to

reconstruct its projection (Jenny & Hurni, 2011; Bayer, 2014)

or symbology. Appropriate metadata would be defined in

standards such the OGC specifications for Web Map Services

(WMS) or the Symbology Encoding specification (Bocher &

Ertz, 2018). This information can be assigned to the map and

then be published, allowing the creation of, for example, web

map services for historical maps, although the original creator

of the map has not provided the required metadata herself – it

has been assigned, manually, by an external actor.

While such detailed manual inspection of geographic

artefacts may be feasible for corpora of historical maps and

small numbers of artefacts of specific scientific or cultural

interest, it is certainly not an approach that scales up to the

volume of maps published on the web in general. What would

be needed are automatic approaches that can assign semantics

to informally published geographic information, to make that

information interoperable with standards-based

infrastructures.

2 Related work and overview of proposed

approach

The need for reconstructing metadata for maps, especially

historic maps, is not new. Often, the map is all that is

available to an investigator, and documentation about the

processes of its creation is not accessible or does not exist.

Therefore, existing tools for cartographic analysis focus on

manual or semi-automatic approaches to reconstruct the

projection parameters from the map image. Both the

Towards Automatic Extraction of Cartographic Metadata

from the Code of Online Maps

 Florian Ledermann

Technische Universität Wien

Research Group Cartography

Erzherzog-Johann-Platz 1/120-6

Vienna, Austria

florian.ledermann@tuwien.ac.at

Abstract

Many maps on the web do not provide any formal information on the cartographic processes at work in them, despite existing elaborate

metadata standards. The key idea of the research presented in this paper is to use the program code of online maps to analyse the
transformational processes applied to render them, and to infer cartographic metadata, such as projection or symbology specifications,

from such an analysis. By using runtime code instrumentation, the data flow graph of each output element on the map is reconstructed

and can be matched against a library of cartographic patterns. Using this method, cartographic processes implemented in informal
program code can be annotated with appropriate metadata, and novel applications for retrieving and analysing online maps can be

envisioned.

Keywords: web cartography, metadata, transformations, reverse engineering, web engineering.

AGILE 2018 – Lund, June 12-15, 2018

2

detectproj (Bayer, 2014) and the MapAnalyst (Jenny & Hurni,

2011) tools work by having a human operator place control

points on (scanned) map images, in order to reconstruct their

cartographic projection.

A potentially fully automatic retrieval of projection

parameters for shapefiles with missing or wrong projection

metadata is presented by Egger (2016). In Egger’s approach,

the point correspondences are automatically retrieved based

on matching place names in the shape files. The tool is

therefore limited to shape files covering overlapping

geographic regions and containing the necessary

administrative units.

Few projects deal with automated metadata reconstruction

beyond projection analysis. An ongoing software project,

Rainbowbot (Niccoli, 2016), sets as its goal to automatically

detect maps which use a “rainbow” color scheme. It is unclear

whether the software is operational and works satisfactorily,

as no results or other details have been published so far.

In the wider field of information visualization, Poco and

Heer (2017) apply computer vision and machine learning

algorithms to retrieve the visualization parameters of simple

chart images. It remains unclear whether such a purely image-

based approach could work with considerably more complex

and less constrained visualizations such as maps.

All these approaches, except Egger’s, have in common that

they focus on trying to infer properties of the transformations

used to create a map or visualization solely from the resulting

image. Egger presents a fully automatic approach, which is

very limited in its domain (assigning point correspondences)

and works only on input data requiring very specific

properties.

An approach entirely different from image-based or data-

based methods is presented in this paper. Many maps are

posted online not as static images, but as JavaScript program

code that recreates the map image from geospatial data. The

key idea of the research presented here is to use the program

code of the map to analyse the transformational processes

applied to the data to yield the map image, and to infer

cartographic metadata from such an analysis.

Program code follows a strict syntax, and is therefore free of

the ambiguities of human language. However, reasoning over

the computational semantics of a given program, sometimes

called static analysis, is provably limited – “most questions

about the behaviour of a program are undecidable or

infeasible to compute” (D’silva, Kroening, & Weissenbacher,

2008). While for strongly typed languages like Java, C++ or

Haskell, it is possible to successfully employ static analysis

techniques to answer a range of specific questions about the

behaviour of a program (Nielson, Nielson, & Hankin, 1999;

Ayewah, Penix, Morgenthaler, Pugh, & Hovemeyer, 2008),

for loosely typed scripting languages like JavaScript, static

analysis is further impeded by the properties of the language

(see Jensen, Møller, & Thiemann (2009) for a discussion of

the specific difficulties of static analysis of JavaScript

programs). On the web, programs to be run in the browser are

necessarily delivered in JavaScript, so these limitations further

impede the successful application of static analysis techniques

to gain insight into the cartographic properties of web maps.

An alternative approach for manual analysis of cartographic

code by “close reading” has been presented at AGILE 2016

(Ledermann, 2016), but the manual study of cartographic code

is prohibitively labour-intensive to be employed on a larger

scale.

In the light of these theoretical limitations and practical

difficulties, instead of trying to directly infer the

transformations applied by a given cartographic program from

static analysis of its source code, this project investigates a

different approach: the dynamic analysis of the program’s

behaviour, meaning: running the program while

simultaneously observing and recording every step of the

program for later investigation.

3 Analyzing cartographic transformations

using runtime program analysis

Several options were evaluated for doing such a “play and

record” session of cartographic programs in a potentially

automated manner, including creating a custom JavaScript

interpreter or tapping into the debugging interface of modern

web browsers. The requirements were best met by using the

Jalangi framework for code instrumentation and dynamic

analysis (Sen, Kalasapur, Brutch, & Gibbs, 2013). Jalangi

provides a transpiler for JavaScript that wraps every operation

of a given program in additional code that provides hooks to

trace calculations, variable changes, conditionals etc.

throughout the run of the program (see Figure 1 for an

example of source code instrumented with Jalangi).

A custom analysis module has been implemented that uses

Jalangi to trace all mathematical operations performed by the

scripts on a web page. This allows us to reconstruct the data

flow graph for all variables of the script and, ultimately, the

program’s visual output.

Figure 1 shows a simple example of such automated

reconstruction of a value’s data flow graph. A line of

JavaScript code, containing a simple calculation (1a), is

transpiled by Jalangi to instrumented code of equivalent

functionality, containing the hooks mentioned above to track

each operation (1b). Our analysis module connects to Jalangi

to reconstruct the data flow graph (1c) and associates it with

the variable.

Figure 1: A simple line of code, analysed with Jalangi. Part (a) shows
the original code, (b) the instrumented source code produced by

Jalangi, and (c) the data flow graph extracted with our module.

(Part (b) simplified for illustration purposes)

A sufficiently educated observer will be able to guess what

the line of code shown in Figure 1a represents: a conversion

of input value a from degrees to radians! While in this simple

example, the semantics of the calculation can still be directly

inferred by reading the source code, for more complex

transformations, the number of possible syntactic variations of

AGILE 2018 – Lund, June 12-15, 2018

3

expressing the underlying calculations makes a direct static

analysis of the code impossible (as has been pointed out

above). The data flow graph, however, contains a

representation of the transformation’s computational

semantics which is much more robust to syntactic and

structural variations of the underlying implementation.

Because the data flow graph is also available as a machine-

processable data structure, automated methods can be applied

to identify patterns in the graph.

Once such transformational patterns are identified, this

information can be used to assign additional semantics to

otherwise generic values in the program. Having access to the

data flow graph, our system would, in the example presented

in Figure 1, not only know the value and basic type of the

variable val, but can with reasonable certainty assume that,

because of the identified transformational pattern, the value

represents an angle in radians that has been converted from a

degree value!

 Again, the simple example of identifying a degrees-to-

radians conversion served to illustrate the proposed method

and could easily be replicated with alternative methods. But

once the complete data flow graph of each value in the

program is available, one can attempt to identify more

complex transformational patterns: different cartographic

projections, geometric transformations, classification,

calculation of visual variables (line width, dot size etc.) and

classes of generalization algorithms, which may all be applied

in the program. We are currently in the process of building

such a library of cartographic transformation patterns for

detection in the extracted graphs.

Figure 2 presents a simple real-world cartographic example.

In the transformation graph of a value used as the y-

coordinate of a plotted point, three transformation patterns

could be identified by our system: a degree-to-radians

conversion applied on the first entry of a coordinate array,

followed by a sequence of calculations characteristic for the

Mercator projection, followed by an affine transformation

(translation and scale) to yield the plotted screen coordinate.

The patterns and the values of their nodes can be used to

unambiguously reconstruct the parameters of the spatial

transformation from geographic datum to screen.

The instrumented source code provides access to the data flow

graphs of all variables used in the program, no matter whether

they are ever involved in creating visual output. For example,

a program may pre-compute a range of values using different

cartographic projections without ever using them to actually

render a map. In this case, the transformation patterns of these

projections would be identified in the overall data flow graph,

although they are not contributing to the actual output of the

program. To capture only those transformations relevant for

the cartographic output, the variables involved in actually

generating such output must be identified.

In a browser environment, to create any visual output, a

script invokes some method(s) of the browsers APIs (since no

direct access to operating system methods is permitted). To

capture the relevant operations, our system augments all

methods of the browser APIs that actually generate visual

output with additional code to capture the previously

generated data flow graphs of the methods’ parameters and

stores them for subsequent analysis. Modern browsers provide

a plethora of API methods to modify the contents on a page:

scripts can create HTML or SVG elements dynamically,

modify the attributes of existing elements, use the canvas API

to dispatch drawing operations etc. – we so far identified a

total of 128 methods in the Chrome browser API that need to

be captured to cover the various options.

With such a capturing layer in place, the system can be run

in a fully autonomous way to analyse the transformational

processes of maps on the web. A “headless” version of the

chrome browser is controlled by a script to load the pages and

run the analysis scripts. Pages are loaded through a proxy

server that instruments each page’s JavaScript code in real

time using Jalangi and injects the API capturing scripts. The

headless browser loads the page, runs all code on the page

(including the instrumentation and capturing) and stores a

screenshot of the page and the data flow graphs of all output

operations in a database. Analysis scripts can then be run

offline on this database of captured visual output and

associated transformations. Figure 3 gives an overview of the

complete technical setup.

4 Discussion and outlook

To this author’s knowledge, the presented method for runtime

analysis of cartographic programs is the first system that

supports the fully automatic reconstruction of cartographic

transformations from program code and extraction of

metadata by analysing the transformation patterns employed.

It is therefore hoped that it may contribute to connecting the

proprietary and informal parts of online geoinformation to

standards-based infrastructures. One of the strengths of the

proposed method is that it works independent of different

coding styles, APIs used or even code obfuscation, allowing

for the analysis of a wide range of real-world cartographic

programs.

Figure 2: Data flow graph of the value “346.74” used as the y-coordinate of a plotted point (rightmost node). The proposed system

identifies a chain of transformations in the data flow graph, involving conversion to radians, cartographic projection using the
Mercator projection, and an affine transformation to screen space. This information can be provided as metadata for the map.

AGILE 2018 – Lund, June 12-15, 2018

4

The proposed method requires access to the program code

performing the cartographic transformations, which is not

always available. Many maps are simply loaded as images, or

rendered completely on the server, out of reach for code

analysis. For such maps, other methods of analysis, such as

those discussed in section 2, need to be used. However,

current trends in web mapping lead to more and more maps

being rendered in the browser: the desire to provide fully

interactive maps, reacting in real time to the users actions and

context; the evolution from web mapping to web GIS

solutions, providing entire GIS pipelines in the browser; and

the technical advantages of delivering raw data instead of map

images to the client, for example in the form of vector tiles.

We are hopeful that in the face of these developments, the

proposed method will be of increased relevance to

cartographic analysis in the near future. (Note, however, that

there may be additional ethical and legal concerns to be

considered before applying such reverse engineering

techniques to third-party software!)

 Mathematical transformations can appear in the data flow

graph in various forms (for example, when converting from

degrees to radians, one may perform the multiplication or,

alternatively, the division first). Our system currently uses a

fixed set of alternative patterns for detecting such

permutations. In the future, it is planned to look into

algorithms for normalizing the mathematical operations

represented in the graph by analytical methods (e.g. see

Shatnawi & Youssef (2007)) for more robust pattern

identification.

Even in a normalized graph, an amount of uncertainty about

the precise semantics of mathematical operations must

remain. Multiplying by π and dividing by 180 would usually

indicate a conversion from degrees to radians, but maybe this

sequence of calculations could occur in a different context as

well. The reliability of our approach of matching

transformational patterns against the data flow graph has to be

verified against real-world corpora of cartographic programs

to see if this is an issue of wider relevance.

Going forward we can envision innovative applications for the

proposed method of connecting the informal and the

standards-based geoweb. The automatic system sketched out

would allow the construction of a cartographic search engine,

allowing users to retrieve online maps according to

cartographic search concepts (projection, symbology,

classification etc.). The screenshots captured by the system,

together with the extracted metadata, would even allow to

provide screenshots of web maps as a Web Map Service

(WMS) to browse the collected maps in a standardized way.

On a smaller scale, an application for cartographic analysis

could be envisioned to support experts or inform novices

about the cartographic principles at work in individual maps.

The engineering methods presented here are not limited to

JavaScript or web technologies in principle. Similar

approaches could be applied in other technological contexts,

such as server software or even historic examples of

cartographic programs, to isolate, preserve and study the

transformations applied.

References

Ayewah, N., Penix, J., Morgenthaler, J. D., Pugh, W., &

Hovemeyer, D. (2008). Using Static Analysis to Find Bugs.

IEEE Software, 25(5), 22–29.

Bayer, T. (2014). Estimation of an unknown cartographic

projection and its parameters from the map. GeoInformatica,

18(3), 621–669.

Bocher, E., & Ertz, O. (2018). A redesign of OGC Symbology

Encoding standard for sharing cartography. PeerJ Computer

Science, 4, e143. https://doi.org/10.7717/peerj-cs.143

Cartwright, W. (2012). Neocartography: Opportunities, issues

and prospects. South African Journal of Geomatics, 1(1), 14–

31.

D’silva, V., Kroening, D., & Weissenbacher, G. (2008). A

survey of automated techniques for formal software

verification. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 27(7), 1165–1178.

Egger, M. (2016). Shapefile Projectionfinder - A new way to

find and define the coordinate system of GIS data

automatically. In Poster at FOSS4G 2016. Bonn, Germany.

Jenny, B., & Hurni, L. (2011). Studying cartographic heritage:

Analysis and visualization of geometric distortions.

Computers & Graphics, 35(2), 402–411.

Figure 3: Overview of a system for automated cartographic analysis using the proposed method (see previous page for discussion)

AGILE 2018 – Lund, June 12-15, 2018

5

Jensen, S. H., Møller, A., & Thiemann, P. (2009). Type

Analysis for JavaScript. In Proceedings of the 16th

International Static Analysis Symposium (SAS 2009). Los

Angeles, CA: Springer.

Ledermann, F. (2016). Initial Findings from Close Reading of

Cartographic Programs. In Workshop „Code Loves Maps“,

AGILE 2016. Helsinki, Finland.

Niccoli, M. (2016). Rainbowbot. Retrieved January 18, 2018,

from https://github.com/mycarta/rainbowbot

Nielson, F., Nielson, H. R., & Hankin, C. (1999). Principles

of Program Analysis. Berlin, DE: Springer.

Poco, J., & Heer, J. (2017). Reverse-Engineering

Visualizations: Recovering Visual Encodings from Chart

Images. Computer Graphics Forum, 36(3).

Sen, K., Kalasapur, S., Brutch, T., & Gibbs, S. (2013).

Jalangi: A selective record-replay and dynamic analysis

framework for JavaScript. In Proceedings of the 2013 9th

Joint Meeting on Foundations of Software Engineering (pp.

488–498). Saint Petersburg, Russia: ACM.

Shatnawi, M., & Youssef, A. (2007). Equivalence detection

using parse-tree normalization for math search. In

Proceedings of the 2nd International Conference on Digital

Information Management (ICDIM ’07).

https://doi.org/10.1109/ICDIM.2007.4444297

