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1 Introduction 

1.1 Background 

Population is a crucial variable for the social sciences, the 

geosciences, and for policy support in many domains. Yet, our 

knowledge of its spatial distribution is still nowadays very 

incomplete. Population is a temporally dynamic variable, with 

major shifts in its distribution occurring in daily and seasonal 

cycles, resulting in rapidly changing densities. Spatially 

detailed representations of residential population exist for the 

European Union (EU) level since several years (Gallego et al., 

2011; Batista e Silva, Gallego & Lavalle, 2013). While these 

maps can be used as proxies for night-time population 

distribution, the distribution of population for other time 

frames is practically unknown at almost every spatial scale. 

Consequently, all applied sciences and policy support that 

require spatially detailed information on population 

distribution must rely on a fractional and static representation 

of reality. Overcoming this large knowledge gap is the main 

goal of the ENACT (“ENhancing ACTivity and population 

mapping”) research project. 

The location of population during the day is determined by 

the location of economic, social and leisure facilities which 

pull population off their residences, driving commuting flows 

and other forms of daily trips. Daytime population distribution 

thus varies greatly from night-time distribution, and it is much 

more challenging to infer. 

Addressing the needs of emergency response, compatible 

day- and night-time population grids have been produced in 

the mid-2000s for the USA (McPherson & Brown, 2004; 

Bhaduri et al., 2007). In Europe, such datasets have been 

mostly lacking, with only a few countries systematically 

collecting base data and modelling population distribution on 

the daily cycle (e.g. Ahola et al., 2007). More recent research 

(Martin, Cockings & Leung, 2010, 2015; Aubrecht, 

Steinnocher & Huber, 2014; Smith, Martin & Cockings, 2016; 

Stathakis & Baltas, 2018) has been increasing the resolution 

of the temporal component and/or including a seasonal 

dimension for limited regional areas by mining geodata from 

different more or less conventional sources. Other authors 

have explored the contribution of big data such as mobile 

phone activity records (Deville et al., 2014; Tatem et al., 

2014) or „geotweets‟ (Patel et al., 2017) for population 

mapping in selected countries, a task which is not without 

shortcomings and challenges. A relatively straightforward 

approach was proposed to estimate day- and night-time 

population distribution at high resolution for the cities in 

Urban Atlas (Freire, Florczyk & Ferri, 2015); yet its quality 

depends largely on that of ancillary datasets and availability of 

local parameters, and accuracy levels have not been assessed 

against independent sources. 

The challenges posed by spatiotemporal mapping and 

modelling of population distribution cannot be addressed 

effectively by conventional data sources alone (e.g. official 

statistics and reference land use datasets). Significant 

advances in this field can only be attained if data from 

conventional data sources are combined with data from 

emerging, non-conventional data sources in a coherent 

methodological framework. Non-conventional data sources 

may include volunteered geographical information 

(Goodchild, 2007), web-based social networks (Aubrecht et 

al., 2017), proprietary thematic databases, mobile phone 

operator data, or even navigation systems. 

Several studies have documented the relevance and 

usefulness of mobile phone data in particular (see for example 
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Deville et al., 2014; Steenbruggen, Tranos & Nijkamp, 2015), 

but one key problem remains data access, which is normally 

negotiated with the data providers by individual researchers 

for specific projects (Demunter & Seynaeve, 2017). 

 

 

1.2 Scope and objectives 

The ENACT project aims at developing and implementing a 

consistent and validated methodology to produce multi-

temporal population density grid maps (or „population grids‟, 

for short) for Europe. The final output of ENACT is a set of 

multi-temporal population grids that take into account the 

main seasonal and daily variations of population, consistent 

with the most recent censuses data (2011), and covering the 

whole of EU28. The target spatial resolution is 1 Km, which 

is sufficiently detailed for sub-regional and local scale 

analyses and applications. The target temporal resolution is 

day- and night-time for the 12 months of the years, hence 

resulting in a total of 24 population grids. These novel 

datasets are expected to not only expand the knowledge base 

of spatiotemporal population patterns across the continent but 

will be useful inputs to applications in various fields. These 

include assessment of human exposure to natural and 

technological hazards, assessment of demand for resources 

(e.g. energy and water), planning and modelling of transport, 

land use, regional economy and environment. 

While the project is in its last phase, with the final outputs 

currently under validation, the purpose of this paper is to 

provide an overview of the ENACT project and its overall 

methodology. The final results of the project will be 

documented in a forthcoming publication. 

 

2 Data and methods 

The final outcome of the ENACT project is a set of 24 

population grids, each representing night-time or daytime for 

each month of the year. This set of multi-temporal population 

grids are discrete and not representative of the whole daily or 

weekly cycles. Each grid represents a „typical‟ working day of 

the month. The weekend variation is not addressed. The night-

time slot represents an „ideal‟ situation when everybody is 

assumed to be at home for rest/sleep, whereas the daytime slot 

refers to a situation when everybody is assumed to be at the 

location of their primary activity during core working hours. 

As such, intermediate daily variations of population are not 

taken into account (e.g. commuting, pre- or after-work 

activities, etc.). The reference year for population data is 

2011, to ensure consistency with the latest round of censuses. 

Although the working spatial resolution is 100 x 100 m, 

results are made available at 1 x 1 km due to difficulties in 

carrying a validation exercise at the working resolution. 

Releasing the data at the working resolution could mislead 

users regarding the actual precision and accuracy of the 

product. 

The methodology is structured in four main tasks or phases. 

Table 1 describes these tasks briefly, and refers to their main 

inputs, outputs, and methods. Some tasks run in parallel (1 

and 2), while others have dependencies (task 3 depends upon 

completion of tasks 1 and 2, and task 4 depends on 

completion of task 3). Figure 1 shows the overall workflow of 

the project and the next subsections provide further detail for 

each task. 

Table 1: Main tasks of the ENACT project, brief description, key inputs, outputs and methods. 
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Figure 1: Overall project workflow 

 
 

 

2.1 Regional population flows and stocks 

This task aims at constructing stocks of relevant population 

subgroups per month and per NUTS3 regions. We considered 

a total of 16 population subgroups, as follows: 

- Residents; 

- Employees per 11 economic sectors; 

- Students per 2 categories; 

- Non-active population; 

- Inbound tourists. 

Residents correspond to the number of registered residents 

within a region. This figure is obtained from Eurostat directly 

at NUTS3 level. Employees are broken down by 11 relatively 

broad economic sectors stemming from the NACE rev.2 

classification of economic activities. The employment 

statistics were obtained from Eurostat and reflect the NUTS3 

region of work. Gap filling was necessary to complete the 

available dataset from Eurostat. Student statistics reflect the 

region where students are enrolled in education institutions. 

Students are subdivided into „below tertiary education‟ and 

„tertiary education and above‟, but in both cases, numbers 

were only available per NUTS2 regions. Students below 

tertiary education were distributed among the respective 

NUTS3 regions based on the proportion of the relevant 

population age-groups. Higher education students were 

downscaled to NUTS3 regions based on the number of 

enrolled students per NUTS3 available from the European 

Tertiary Education Register (ETER). The non-active 

population subgroup refers to population not working nor 

studying, and comprehends retired population, children not 

attending kindergartens, unemployed, and inactive working-

age population. The common denominator of this population 

subgroup is the likelihood that its members hang around 

residential areas for a significant share of the daytime. The 

estimation of this stock per NUTS3 involved the combination 

of data from various Eurostat tables. 

Inbound tourists are defined broadly as visitors (thus 

temporary residents) in the region for any purpose, leisure and 

business altogether. Inbound tourists were derived by 

following a series of calculation steps. First, annual no. of 

nights-spent within a NUTS2 region (Eurostat) were 

disaggregated to NUTS3 regions based on the no. of bed-

places per NUTS3 (Eurostat). Then, the NUTS3 annual no. of 

nights spent were broken down per month using regional 

(NUTS2 or NUTS3) seasonal curves constructed from data 

procured from every National Statistical Office (NSO). 

Finally, the average daily no. of inbound tourists is obtained 

by dividing the nights-spent per region and per month by the 

respective no. days in the month. For more details on the 

methods and results of the spatiotemporal mapping of tourists, 

see Batista e Silva et al. (2018). 

Also from NSOs we obtained data allowing us to split 

inbound tourists in a country per country of origin. Tourists 

from countries outside the study area (i.e. EU28) represent 

added population to the existing stock. Tourists from the same 

country (domestic) or from countries within the study area 

(non-domestic) had to be subtracted from their regions of 

origin to avoid double counting of total population within the 

study area. In Figure 2 a visual representation of the flow of 

tourists between countries within the study area can be 

appreciated. 

In sum, the seasonal variation of the total present population 

in a region is linked primarily to touristic flows, both inbound 

and outbound. Figure 3 shows, for one alpine region in 

Austria, the monthly variation in stock of present residents 

and inbound tourists resulting from the described procedure. 

 

Figure 2: Origin-destination of non-domestic nights-spent. 

 
 

 

Figure 3: Monthly variation of the stock of present residents 

(axis on the left) and inbound tourists (axis on the right) in the 

region of Tiroler Unterland, Austria (NUTS3 code „AT335‟), 

indexed to the month of January. 
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2.2 Activity mapping 

To map the locations of probable presence of population for 

the various sub-groups we resorted to multiple data sources, 

proprietary and open, conventional and non-conventional.  

Land use and land cover (LULC) are widely used as 

ancillary variables (covariates) in fine resolution population 

mapping and modelling (Wardrop et al., 2018). In the context 

of the ENACT project, we constructed our own „base map‟ for 

the disaggregation of population stocks from regional to grid 

level. This base map is a refined version of the well-known 

CORINE Land Cover map, version 2012 (CLC 2012). The 

refinement of CLC 2012 includes two key components: 

a) Spatial refinement; 

b) Thematic refinement. 

The spatial refinement consists of improving the spatial 

detail and geometric representation of the LULC classes. In 

practice, we reduced the minimum mapping unit from 25 

hectares to 1-5 hectares (typically 1 ha for artificial surfaces, 5 

hectares for all other LULC classes). The reduction was 

achieved by combining information from multiple geodata 

sources, and their integration with the original CLC 2012 in a 

sequential order. Input data have been selected and harvested 

upon compliance with the following criteria: 

- Compatibility with CLC‟s LULC nomenclature 

(LULC class definitions); 

- Reference year 2012 +/- 2; 

- Higher spatial resolution than CLC 2012; 

- Pan-European geographical coverage; 

- Preferably free, open and documented data. 

The input data sources are listed below: 

- CLC products: CLC 2012 v 18.5, CLC Changes 2006-

2012 and CLC Changes 2000-2006; 

- Copernicus high resolution (HR) layers 2012: HR 

layer Forest type + Tree cover density, HR layer 

Permanent water bodies, HR layer Wetlands; 

- TomTom Multinet 2014: Land Use layer + Built-up 

layer; 

- JRC‟s European Settlement Map (ESM) (10m version, 

aggregated to 100 m reference grid); 

- Urban Atlas 2012 (~ 700 Functional Urban Areas 

covered); 

- OpenStreetMap (OSM) and TomTom Multinet 2014 

as source of road network data. 

The thematic refinement consists in increasing the 

breakdown of the LULC categories originally available in 

CLC. CLC uses a hierarchical nomenclature with 44 classes at 

level 3, however only 11 comprise artificial surfaces. The goal 

is to derive more specific subclasses of human activities, 

which can be linked to various population subgroups. A level 

4 is therefore added to the CLC nomenclature. 

Methods based on cartographic overlay between the original 

map and ancillary layers are applied to derived classes 11XX, 

122X, 124X, 1421, and 1422. The breakdown of class 121 in 

3 subclasses is based upon a machine learning classification 

approach. After the spatial refinement step, each 121 polygon 

was geometrically intersected with the road network from 

TomTom to obtain a finer set of polygons (~0.75 million). 

Each resulting polygon is characterized by a number of 

explanatory variables (weighted sum of Points of Interest 

from 16 categories) and other contextual variables related to 

population density, land use/land cover in the neighborhood, 

and distance to key transport features). The sources of geodata 

to construct these explanatory variables include: 

- Proprietary geographical data: TomTom Multinet 

(transport and miscellaneous Points of Interest), 

PLATTS (energy), EuroRegionalMap from 

EuroGeographics (miscellaneous); 

- Open and public sources: European Pollutant Release 

and Transfer Register (location of industries); 

- Volunteered Geographical Data: OpenStreetMap 

(miscellaneous Points of Interest). 

For about 1/3 of all the class 121 polygons we have 

determined their ground truth class based upon detailed 

national land use maps for a selection of countries and regions 

(COS for Portugal, SIOSE for Spain, COSW for Wallonie, 

and DUSAF for Lombardy), as well as land use polygons 

obtained from OpenStreetMap and TomTom. All this 

information was then used by Machine Learning classifiers to 

construct an explanatory model which was then be used to 

classify 121 polygons without ground-truth in the level 4 

categories. An independent validation carried by comparing 

the automatic classification with human interpreted imagery 

yielded an overall accuracy of 74% with a Kappa of 0.53 (for 

Figure 4: Differences between the original CLC 2012 (left) and the CLC after spatial and thematic refinement (right) for the 

area surrounding Brussels, Belgium. 
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more details refer to Rosina et al. (2018)). 

The „activity mapping‟ task included as well the production 

of some complementary activity layers, such as those 

depicting touristic accommodation room density (based on 

data from online booking services), retail and food service 

density (constructed with data from TomTom Multinet Points 

of Interest), and location of schools. These additional layers 

were needed due to conceptual difficulties in integrating 

point-based data of hotels, shops, and schools in the polygon-

based LULC map. These layers play a key role in the 

subsequent spatial allocation of population subgroups such as 

tourists, students, or shop workers. 

 

 

2.3 Population disaggregation 

Regional population stocks were disaggregated to grid level 

using the ENACT refined LULC map, and the complementary 

activity layers mentioned previously. Residents are assigned 

entirely to areas deemed residential, while the stock of tourists 

is assigned to locations of touristic accommodation. The sum 

of these „gridded‟ residents and tourists constitutes the „night-

time‟ grid for each given month. 

To produce daytime population grids, we allocate all 

population subgroups (excluding residents) to the relevant 

LULC classes and in some cases the allocation is also based 

on complementary activity layers. The spatial allocation, or 

disaggregation, is governed by a probability matrix 

establishing a link between each population subgroup and 

each LULC or activity class. The matrix was built based on 

expert judgement. The disaggregation is further guided by the 

local built-up densities as per the European Settlement Map. 

Figure 5 shows the difference between day- and night-time 

grids at 1 km resolution, as per an early version of the results, 

showing marked spatial configurations. 

 

 

2.4 Validation / cross-comparison 

ENACT‟s population grids are being compared against data 

from at least two types of independent sources: 

- Mobile phone usage density grids from mobile phone 

operators; 

- Commuting data from which day and night-time 

population per municipality can be derived. 

The comparison is being carried for areas for which data are 

available. Currently, we possess mobile phone operator data 

for Amsterdam (Jacobs-Crisioni et al., 2014), Milan and 

Trentino (Barlacchi et al., 2015), and Belgium (Demunter & 

Seynaeve, 2017). Commuting data is, instead, available for 

Italy, Portugal, Poland and Czech Republic. 

The comparison is done on a case by case basis, as each 

data source has different degree of spatial, temporal and 

thematic resolutions. In most cases, the ENACT output will 

Figure 5: Difference in total population per 1 km2 between day- and night-time (provisional results). 
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have to be aligned to match the definition and resolution of 

the independent source. For example, day and night-time 

population derived from commuting data does not incorporate 

tourists; or grids from mobile phone operator refer to usage 

density, rather than total population density. 

Options to deal with these differences may include variable 

rescaling or careful design of comparison measures based on 

relative densities across time and space, rather than absolute 

ones. Moreover, ENACT‟s gridded values at 100 x 100 m will 

be aggregated to the spatial zoning system of the reference 

sources, and not the other way around, to avoid distortion of 

the reference data. 

 

 

3 Early conclusions and way forward 

Although the project is not finalized, some preliminary 

conclusions can already be drawn. Multi-temporal modelling 

of population distribution is an exceptionally data-intensive 

task, especially for large study areas. Data integration is 

challenging due to the required data volume and variety in 

terms of formats, definitions, nomenclatures and/or semantics. 

The long and intricate workflow to combine such a variety 

of data inputs, each with its own inaccuracies, leads inevitably 

to a propagation and accumulation of error in the final product 

too. Knowing the accuracy of the produced datasets is 

necessary to inform the users of the product but also to 

determine the spatial scale at which it should be used. 

Therefore, designing a robust quality assessment strategy is no 

less important and challenging as the modelling per se.  

Unfortunately, a proper and systematic validation is difficult 

to implement due to the lack of truly comparable data. A set 

of cross-comparison metrics for selected areas, using 

independent datasets, is currently being laid to hopefully shed 

light on the reliability and plausibility of ENACT‟s outputs. 

A planned follow-up includes the update of ENACT‟s grids 

to reflect population data from 2015. Additional work should 

target the improvement of the accuracy and temporal 

resolution, towards more continuous population grids. As it is 

likely that the quality and quantity of suitable input data will 

grow in future, it is also vital to attempt at developing a 

flexible modelling framework that could accommodate 

gradual data (and methodological) improvements. 

 

 

Disclaimer 

The views expressed are purely those of the authors and may 

not in any circumstances be regarded as stating an official 

position of the European Commission. 
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