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Objective and General Approach

Our primary aim is to find patterns among Urban Street Net-
works (USN) to gather them in categories.
Our approach envisages USN as evolving social structures
subject to an entropic equilibrium similar to the one effec-
tively observed among cities of a same country with respect
to their sizes [1].

Overview

While our raw material are data extracted from data/map
comprehensive archive networks as provided for instance
by the OpenStreetMap (OSM) project, our investigation
is based on well-known properties among USN that are
sketched in a preliminary section.
The entropy is computed within the framework of physics
information theory [2]. Accordingly, the concrete structures
of USN must be structured as abstract algebraic ordering
structures known as Galois lattices in order to apply the
involved formalism: it appears that the Galois lattices for
USN take a very intuitive form. As a result, the structure
entropy for USN can be easily expressed: an explicit for-
mula is given.
Then, we apply the entropic equilibrium model employed in
[1]. Hypothesizing a crude asymptotic agent based model
along the spirit of the city model [1] allows us to predict
two power-law distributions: a pure power-law distribution
for “named streets” as already reported in literature, and a
generalized power-law for street junctions.
We believe that the ratio of the two scaling exponents may
allow us to categorize USN.

Geometrical vs. Topological
Urban Street Networks

Trivial vs. Non-Trivial Complexities

Street Junctions and Street Segments
From the raw material, street junctions and street segments
emerge spontaneously; see Figure 1a for illustration.

Geometrical Networks: Trivial Complexity
Street junctions and street segments form, respectively, the
natural nodes and edges of abstract networks, known as
geometrical networks; see Figure 1c. Nonetheless, their
complexity is trivial: three or four edges for most nodes [3].
Without surprise, the complexity of their dual counterpart
the segment-segment geometrical networks, is also trivial:
four, five or six edges for most nodes; see Figure 1e.

Natural Roads
We (humans) rather reason in terms of streets than of street
segments. Named streets are results of intricate social pro-
cesses. A natural road is an exclusive sequence of succes-
sive street segments paired according to some behavioural
based join principle. Besides the cadastral approach, geo-
metrical ones based on deflection angles are used: a junc-
tion centric one (every-best-fit) which is almost de-
terministic; two segment centric ones (self-best-fit,
self[-random]-fit) which have appeared realistic (the
latter being the best fit) [3]. See Figure 1b for illustration.

Topological Networks: Non-Trivial Complexity
We also plan our trajectories rather in terms of streets than
of junctions. A road-road topological network reduces nat-
ural roads to nodes and links each pair that shares a junc-
tion — see Figure 1d. In general, for cadastral and segment
centric join principles, road-road topological networks show
intelligence behaviours as observed in some technological,
biological or social networks [4]; in particular, they generally
exhibit small-world and scale-free properties [3, 4].
Dually, junction-junction topological networks can be built
— see Figure 1f. Nevertheless, their apparent intricacy ren-
ders them less appealing to us (human).

Canonical Natural Roads
We will use the adjective canonical whenever any in-
volved junction joins at most two natural roads. In Figure 1,
the junction j7 is the only noncanonical junction since it is
the only junction that joins together more than two natural
roads.

i1

j1

i3

j2

j3

i4

j4 j5

i5

i6

j6

j7
j8

i7

i2

i8

i9

s1

s2
s3
s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18

i1

j1

i3

j2

j3

i4

j4 j5

i5

i6

j6

j7
j8

i7

i2

i8

i9

s1

s2
s3
s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18

i1

j1

i3

j2

j3

i4

j4 j5

i5

i6

j6

j7
j8

i7

i2

i8

i9

s1

s2
s3
s4

s5

s6
s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18

i1

j1

i3

j2

j3

i4

j4 j5

i5

i6

j6

j7
j8

i7

i2

i8

i9

ra

rb
rc

rd

re

rf

rg

rh

i1

j1

i3

j2

j3

i4

j4 j5

i5

i6

j6

j7
j8

i7

i2

i8

i9

ra

rb
rc

rd

re

rf

rg

rh

i1

j1

i3

j2

j3

i4

j4 j5
i5

i6

j6

j7

j8

i7

i2

i8

i9

ra

rb
rc

rd

re

rf

rg

rh

(a) (b)

(c) (d)

(e) (f)

Figure 1: A notional urban street network † and its representations.
The left column represents the geometrical variants: (a) artificially colored ‘raw
material’ graph displaying street [extended-]junctions (impasses and effective
junctions) and segments in grey and pallid colors, respectively; (c) junction-
based connectivity graph; (e) segment-based connectivity graph dual to the
graph drawn in (c). The right column shows the topological variants for a
same generated design: (b) revamped ‘raw material’ graph exhibiting original
junctions and generated natural roads in grey and vivid colors, respectively;
(d) natural-road-based connectivity graph; (f) junction-based connectivity graph
dual to the graph drawn in (d). Notice that the size of each node is proportional
to its valence for the abstract networks (c), (d), (e) and (f).
† Inspired by the ‘notional road network’ introduced in [3].

Urban Street Galois Lattices
‘Structure before measure’

Incidence Relations: Road vs Junction Charts
The construction of any topological network is decom-
posable in two steps. First step, set the incidence re-
lation λ that gathers for each natural road all junctions
through which it passes; in practice, λ is better repre-
sented by a road/junction cross/dot-chart as exemplified in
Table 1. Second step, the adjacency matrix of the road-
road (junction-junction) topological network is given by λ·λT
(λT · λ) where λ is represented as a (0,1)-binary matrix.

λ j1 j2 j3 j4 j5 j6 j7 j8 i1 i2 i3 i4 i5 i6 i7 i8 i9
ra  ·    ·     · · · · · · ·

rb ·   · · · · · · ·   · · · · ·

rc · · ·  · · · · · · · ·  · · · ·

rd · · · ·   · · · · · · · · · · ·

re · · · · ·   · · · · · ·  · · ·

rf · · · · · · ·  · · · · · ·  · ·

rg   · · · · · · · · · · · · · · ·

rh · · · · · ·  · · · · · · · ·   

Table 1:Notional road/junction cross/dot-chart associated to the natural
roads generated in Figure 1b.

Thus the topological networks appear as incomplete, rough
representations of incidence relations.

Galois Lattices: Holistic Representation
Relying on the Formal Concept Analysis (CFA) paradigm
[5] allows us to plainly represent incidence relations as al-
gebraic structures known as Galois lattices [6, 5]. For natu-
ral roads, Galois lattices appear to take a very intuitive form
composed of two nontrivial layers [7]: the natural roads form
the lower one; the junctions the upper one; the ‘imply‘ or-
dering relation is “passing through”. See Figure 2 for illus-
tration.

j6 j7 j5 j4 j8 j1 j3 j2

re rh rd ra rc rf rg rb

Figure 2:Notional (Galois) lattice associated to the natural roads gener-
ated in Figure 1b: for clarity, the bottom ⊥ and top > elements are not shown.

Physics Information Theory
‘Measuring is the quantification of ordering’

Concerning Galois lattices, while the poset and algebraic
perspectives are respectively structural and operational [5],
the whole is measurable [2]: imposing natural consistency
constraints enables us not only to evaluate lattices but also
to supercede contemporary information measures.

Briefly, for canonical natural roads (natural roads whose
junctions join at most two of them), the structure entropy
H holds the functional formula [7]

H =
∑
r

(h ◦w) (Va(r)) +
∑
j(r,s)

(h ◦w) (Va(r)+Va(s)) (1)

where the first summation runs over the natural roads r and
the second over the junctions j(r, s) joining the pair of natu-
ral roads (r, s); the unknown valuation function Va contains
the physics of the natural roads, the unknown function w
acts as a weight function, and h : x 7→ −x lnx is the Shan-
non entropy function.

Entropic Equilibrium
Jaynes’ Maximum Entropy Principle

ln-Mean as Moment Constraint
By analogy with [8], let us see natural roads and junctions
as balanced social clusters, so USN as balanced mosaics
of balanced social clusters. Our initial ignorance yields on
the clusters, so the entropy for each cluster c is ln (Ωc) with
Ωc its number of configurations [8]. Applying the maximum
entropy principle with the ln-mean

∑
cPr (Ωc) ln (Ωc) as mo-

ment constraint leads to the Shannon Lagrangian [1, 8]

L ({Pr (Ωc)} ; ν, λ) = −
∑
c

Pr (Ωc) ln (Pr (Ωc)) +

− (ν − 1)
[∑

c

Pr (Ωc)− 1
]
− λ
[∑

c

Pr (Ωc) ln Ωc − aλ
]

(2)

where the sums run over the natural roads and junctions c;
ν and λ are Lagrangian multipliers. Resolving (2) gives

Pr (Ω) = Ω−λ Z−1 with Z =
∑
c

Ω−λc (3)

which is a pure power law distribution.

Asymptotic Agent-Based Model
Then, let each cluster to be a hive of agents [1] (drivers, cy-
clists, pedestrians, suppliers, institutional agents, residents,
and so forth) whose very existence relies on the ability for
each of its agents to maintain a crucial number of intracon-
nections crudely equal to a constant number ν, called the
number of vital connections [1]. For each natural road,
being extensive, the number of agents is assumed crudely
proportional to its number of junctions; we write

Ωr = Ωr (nr) '
(1

2Anr (Anr − 1)

υr

)
' A2υr

2υrυr!
n2υr
r . (4a)

For each junction, along this spirit, the involved agents are
merely the agents of the two joining natural roads combined
together; the same crude maneuvers hold

Ωj(r,s) = Ωj
(
nj = nr + ns

)
' A2υj

2υjυj!
n

2υj
j . (4b)

Thus, the valuation function Va appears to assign to each
cluster the number of associated agents while the weight
function w asymptotically counts the number of possible vi-
tal intraconnection layouts in the involved intranetwork —
modulo normalization. Injecting (4) into (3) recovers the
pure power-law effectively observed for road-road topolog-
ical networks [3, 4] and foresees a generalized power law
for junction-junction topological networks:

Pr (nr) ∝ n−υrλr (5a)

Pr
(
nj
)
∝ J

(
nj
)
n
−υjλ
j (5b)

where J
(
nj
)

is the counting function
∑
j(r,s)

[
nj = nr + ns

]
,

with Iverson bracket convention; nr (nj) is essentially the
degree associated to the natural road r (the junction j) in
the involved road-road (junction-junction) topological net-
work, while υr and υj are a priori distinct. Preliminary in-
vestigations [7] shows evidences for (5b).

Conclusion

A systematic, holistic approach allows us to predict two
power law distributions for USN, one already reported in
literature [3, 4] and a second under promising investiga-
tions [7]. This result opens a perspective on characterizing
USN by their pair of scaling exponents.
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