
1 Introduction

Spatial interactions are omnipresent in a wide range of

geographic phenomena, ranging from individual

communication and information exchange to transportation

flows and human migration at a more aggregated level, and

from trading between regions and countries on the earth to the

gravitational interaction between celestial bodies at coarser

granularity. Agent-based models (ABMs) are well suited to

capture the complexity of spatial interaction systems, because

they characterize the spatiotemporal dynamics of global

patterns emerging from local processes involving spatially

distributed entities and the feedback of global-level

emergence to the development of local interactions. Previous

research has been dedicated to improving the scalability of

spatial ABMs fed with big spatial data by taking advantage of

various parallel computing resources in the emerging

cyberinfrastructure (Gong et al., 2013; Gong et al., 2017).

Specifically, the special parallel paradigm of Non-Uniform

Memory Access (NUMA) has been proposed to tackle the

uneven distribution of computing overhead caused by the

heterogeneous patterns of spatial interactions. The known

structure of interaction patterns and its constancy are assumed,

so that the optimized decomposition and allocation of spatial

domains across computing resources can be performed to

minimize the data access cost and thus to enhance scalability.

However, big spatial data feature not only large data volumes

but also high velocity, such as real-time traffic information or

social media feeds; this means that data streams come in so

fast with constantly changing longitudinal patterns that are

almost impossible to predict. This new challenge points out

the deficiency of existing parallelization paradigms or

approaches whose performance gain stems from determining

the optimal parallelization strategy, given an interaction

pattern; yet, it cannot keep up with the pace of pattern change

of incoming data.

In this study, we propose to employ a new many-core co-

processing platform, Many Integrated Core (MIC)

coprocessors (Jeffers and Reinders, 2013), to resolve the

performance issue for the parallelization of spatial interaction

ABMs with high-velocity spatial big data. The MIC platform

provides dedicated enhancements for non-homogenous data

access without the interference of external optimization

strategies for data access cost. This allows for a simplified

external parallelization strategy that focuses on

straightforward domain decomposition and load balancing,

and may significantly reduce the extra effort in modifying and

optimizing existing codes. By comparing the proposed

paradigm applied to an ABM of spatial interactions with the

previous NUMA paradigm, we demonstrate the superiority of

the MIC platform over the other in terms of model scalability

and performance.

2 Agent-based spatial interaction models

We use a hypothetical agent-based model to simulate the

interaction between spatially situated individuals. Specifically,

the interaction between individuals is reflected by an opinion

exchange process as that in the bounded confidence model

(Weisbuch et al., 2002). That is, individual agents (e.g.,

persons or households) are spatially distributed in a grid-based

landscape. Each cell in the grid accommodates only one agent.

Each agent will identify a neighbour to exchange opinion

regarding an arbitrary topic via a neighbourhood setting.

However, this communication is bounded by an assumption

that, when two agents hold extremely different values, no

opinion exchange occurs. Therefore, successful opinion

exchange takes place based on a learning function (1), only

when two agents hold similar enough opinions as set by a

threshold 𝜎:

Massively Parallel Simulations of Agent-based Spatial Interaction: A

Many-core Computing Approach with Spatial Big Data

Zhaoya Gong

School of Geography, Earth and

Environmental Sciences

University of Birmingham

Birmingham, UK

Z.Gong@bham.ac.uk

Wenwu Tang

Department of Geography and

Earth Sciences

University of North Carolina at

Charlotte, USA

WenwuTang@uncc.edu

Jean-Claude Thill

Department of Geography and

Earth Sciences

University of North Carolina at

Charlotte, USA

Jean-Claude.Thill@uncc.edu

Abstract

Big spatial data is characterized by not only large data volumes but also high velocity, which poses challenges for data processing
systems. This study focuses on addressing the issue of deficiency in parallel processing of high-velocity spatial big data that features fast

changing patterns of spatial dependency over time. We propose to use a many-core architecture, Many Integrated Core (MIC), to the

resolution of this issue. An agent-based spatial interaction model is customized to simulate massive distributed interactions and
corresponding changing patterns over time steps and to mimic a course of real-time data processing with a certain velocity. Two groups of

experiments are designed to evaluate the proposed approach. Our experimentation reveals that MIC enables superior model scalability and

that MIC-supported models are only subjected to moderate influence on their performance with respect to changing model characteristics.

Keywords: MIC, many-core, spatial big data, high velocity, spatial interaction, ABM.

AGILE 2017 – Wageningen, May 9-12, 2017

 𝑊𝑖
′ = {

(1 − 𝜌)𝑊𝑖 + 𝜌𝑊𝑖 𝑖𝑓 |𝑊𝑖 − 𝑊𝑗| ≤ 𝜎

𝑊𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

where 𝑊𝑖 and 𝑊𝑗 represent the current opinion values of

agents i and j, 𝑊𝑖
′ is the new opinion value of agent i after

communication, and 𝜌 is the learning rate.

The temporal dimension of the opinion exchange follows an

iterative process, where a series of time steps mimics a certain

velocity of real-time data processing. At each time step, each

agent has one opportunity to initiate an interaction with an

identified neighbour. To create a different data pattern for

each time step, agents follow a random sequence of

interactions, which is realized via a shuffling mechanism at

the beginning of every time step. Furthermore, we use a

nondeterministic approach for neighbour identification, which

increases the variation of data patterns over time steps. With

the assumption of distance dependency, a circular

neighbourhood is defined around each agent after the polar

coordinate system. A distance-decay function (2) is used to

relate the distance 𝐷𝑖𝑗 between an agent i and its neighbour j

to the probability that i identifies j as its neighbour 𝑃𝑖𝑗.

 𝑃𝑖𝑗 = 𝐷𝑖𝑗
1/−𝛼

 (2)

where 𝛼 is a decay coefficient. Figure 1 demonstrates the

effect of 𝛼 on distance with 𝑃𝑖𝑗 ≤ 0.01. In other words,

varying parameter 𝛼 allows us to change the radius for

neighbour search. During simulation, 𝑃𝑖𝑗 is randomly

generated from a uniform distribution, and then 𝐷𝑖𝑗 can be

determined by inverting equation (2) with a given parameter

value for 𝛼. Together with a randomly selected azimuth

between 1° and 360°, a neighbour can be identified using the

polar coordinate pair (distance, azimuth). Figure 2 presents

the model mechanism of our spatial interaction ABM via a

flow chart (Grimm et al., 2006).

Figure 1: The relationship between distance and 𝛼 with

𝑃𝑖𝑗 ≤ 0.01

3 MIC platform for parallel ABMs

Intel’s MIC architecture is a many-core coprocessor platform

that assists the main processors (i.e., CPUs) for certain types

of computing tasks (e.g., floating point and graphics) in order

to achieve better efficiency (Jeffers and Reinders, 2013).

Another popular coprocessor platform is Graphical Processing

Units (GPUs), which is dedicated to graphics processing in

nature. As a many-core platform, a MIC chip integrates up to

61 lightweight cores having a capability to provide 4 hardware

threads on each core, which enables massive parallelism and

high throughput. Compared to common multi-core processors,

MIC supports smaller cores, more hardware threads, wider

vector units and higher bandwidth for memory access. Due to

MIC’s architectural compatibility, it is much easier to port

existing sequential and parallel codes running on multi-core

processors to MIC comparing to the GPU platform that

typically involves rewriting or heavily modifying existing

code to fit new programming models.

Gong et al (2017) proposes multi-core platforms with

NUMA architecture for parallel spatial ABMs with

heterogeneous interaction patterns. The key to achieving a

highly scalable performance for NUMA is that distributed and

localized memories are attached to different processors, while

local memories are also visible to remote processors (the left

part in Figure 3). As a shared-memory system as well, MIC

has distributed cores and GDDR memories (high-performance

RAM with a high bandwidth designed for use in graphics

cards) connected by a ring-shape, two-way circling, high-

speed interconnection bus for data communication (the right

part in Figure 3). A comparison of MIC and NUMA is shown

in Figure 3. It illustrates that, from a model parallelization

perspective, the landscape of our ABM is decomposed into

spatial partitions and the partitions are then assigned to

D
is

ta
n

ce
 (

ce
lls

)

𝛼

Figure 2: Flow chart of our parallel spatial interaction ABM

AGILE 2017 – Wageningen, May 9-12, 2017

different memory spaces for parallel computing (the middle

part in Figure 3). On a NUMA platform threads generated by

cores compute the partitions in their local memories, while on

a MIC platform each thread computes one of the partitions

which are automatically distributed and managed by the

platform. For both platforms, interactions between agents

located in the same partition are intra-thread interactions,

while interactions between agents located in different

partitions are inter-thread interactions. Intra-thread

interactions are less expensive because data access occurs

within one local memory bank. In contrast, inter-thread

interactions are much more costly due to the overhead caused

by data access between different memory banks. Detailed

parallel processing of our spatial interaction ABM is

presented in Figure 2.

4 Model implementation

Our models are implemented on an Intel Xeon Phi SE10P

Knights Corner MIC coprocessor on a PCIe card, which is

hosted by a compute node in the Stampede supercomputer

system from the Texas Advanced Computing Center. This

MIC coprocessor contains 61 cores (1.1 GHz) and 8 GB of

GDDR5 memory. For comparison, the models are also

implemented on a compute node from a smaller Linux cluster.

This node has 32 CPU cores (AMD Opteron 2.0 GHz) and 64

GB of memory. Both implementations aim to exploit thread-

level parallelism and are coded in C++ and OpenMP

(Chapman et al., 2008). The latter is a standard specification

for multithreading programs running on shared-memory

platforms.

To assess the performance and scalability of our parallel

models, two metrics, Speedup and Efficiency, are defined as

follows (Wilkinson and Allen, 2004):

𝑆 =
𝑇′

𝑇
, 𝐸 =

𝑆

𝑅
 (3)

where 𝑇 is the execution time for a baseline model (e.g.,

sequential model), 𝑇′ is the execution time for a target parallel

model, and 𝑅 is a ratio between the number of computing

units used by the target model to the number of computing

units used by the baseline model. For example, if a baseline

parallel model uses 2 threads and the target parallel model

uses 32 threads, 𝑅 = 16.

5 Experiments

To evaluate the performance of a MIC approach for the

parallelization of our spatial interaction ABMs, experiments

are designed to examine 1) the scalability of the parallel

models on a MIC platform with a comparison to that for a

NUMA platform, and 2) the impacts on the model

performance when two spatial characteristics of the ABMs are

changed. Throughout all experiments, at most 60 cores of the

MIC coprocessor will be used with 4 threads running on each

core. For the NUMA platform, only one thread per core will

be used for its best performance. A straightforward horizontal

decomposition strategy with balanced workload for each

thread (Figure 3) is applied to parallel models for both

platforms. This simplification is intentional in order to better

single out the effect of the underlying platform on model

performance.

5.1 Scalability comparison

We first examine the scalability of our parallel AMBs on both

MIC and NUMA platforms as computing units utilized

increase. For the convenience of comparison, we arrange a

series of subsets of cores for both platforms to have the same

number of treatments. The specifications regarding the

number of cores/threads for all treatments are detailed in

Table 1. This arrangement specifies that the baseline model

for MIC uses 10 cores (40 threads) while for NUMA the

baseline uses 1 core (1 thread). Therefore, the ratio 𝑅

Figure 3: Comparison of MIC and NUMA architectures for the parallelization of spatial interaction ABMs

AGILE 2017 – Wageningen, May 9-12, 2017

(Equation 3) for each treatment can be calculated accordingly.

Table 1 also shows the computing times for models supported

by MIC and NUMA platforms. The model time is the portion

of total program execution time, excluding the shuffle time

(the aggregated time taken to do shuffling at the beginning of

each time step during a model run). Thus, the model time

allows us to focus on the aggregated time taken for spatial

interactions.

Table 1: Comparison of MIC and NUMA in terms of model

computing time (second) for different treatments (landscape

size = 4000 x 4000 and 𝛼 = 0.1)

MIC NUMA

Threads/

Cores
R Model

Threads

/Cores
R Model

40/10 1 975.03 1/1 1 3591.51

80/20 2 501.50 2/2 2 2469.88

120/30 3 323.30 4/4 4 1300.06

160/40 4 243.57 8/8 8 697.26

200/50 5 194.83 16/16 16 354.21

240/60 6 162.56 32/32 32 163.17

Note: the bolded row indicates baselines

Note that all model runs in Table 1 have used the same set

of parameters for spatial characteristics, landscape size = 4000

x 4000 and neighbourhood radius 𝛼 = 0.1. To reduce the

random effect, for each treatment 10 model runs are

conducted and averaged results are obtained throughout all

experiments in section 5.

Figure 4: Comparison of model efficiency for MIC and

NUMA

Table 1 shows that MIC and NUMA achieve similar

performance (162.56 vs. 163.17) for fully loaded systems,

though MIC is slightly faster. Based on Table 1, Figure 4 can

be created to compare the scalability of MIC and NUMA in

terms of the Efficiency metric. For NUMA, as the computing

units increase from 2 to 16, model efficiency drops to 0.63

with an initial value of 0.73. Until the system is fully loaded

with all cores (32 threads), the efficiency increases back to

0.68. In contrast, model efficiency metrics for MIC are equal

or close to 1 (perfect efficiency) over all treatments. Note that

when 60 cores (240 threads) are used, the efficiency (0.97) is

slightly lower than 1, which can be explained by the

overheads generated from a large volume of inter-thread

interactions between many partitions (240). In sum, the

overall performance of model for NUMA is in the range of

0.63 to 0.73, which is much lower than that for MIC across all

treatments. This comparison confirms a superior scalability of

the parallel models supported by MIC than that for NUMA.

5.2 Impacts of spatial characteristics

We turn to examine here how the MIC platform responds to

the impacts of spatial characteristics of spatial interaction with

respect to model performance. Specifically, two

characteristics are under consideration, namely, landscape size

and parameter 𝛼 for neighbourhood radius.

Given a grid landscape, a series of sizes are included in the

experiments, ranging from 1,000 x 1,000 to 10,000 x 10,000

with a 1,000 x 1,000 interval. 𝛼 = 0.9 is set for all treatments.

The aim is to examine how efficiently the model performs as

the volume of interactions increases with an enlarging

landscape size. We take a similar approach as the calculation

of Efficiency for scalability in (3). The model with a size of

1,000 x 1,000 is used as a baseline and the ratio R is

calculated as the ratio of the size for a target model to the size

of the baseline. Thus, we can obtain a metric indicating the

efficiency of model performance with respect to landscape

size, which is reported for each treatment in Figure 5. It

illustrates that the parallel models exhibit very high

performance with efficiency metrics close to 1 over all

treatments and this performance is quite stable as landscape

size increases.

Figure 5: Model efficiency with respect to landscape size for

MIC

The second spatial characteristic, 𝛼, determines the radius to

search a neighbour in spatial interactions. As reflected by

Figure 1, larger 𝛼 means higher probability to identify a

neighbour in a different partition, which may result in inter-

thread interaction and larger overheads for data access. The

experiments use a series of 𝛼 values from 0.1 to 1.5 with an

interval of 0.2. Landscape size of 4,000 x 4,000 is fixed for all

Ef
fi

ci
en

cy

𝑅

Ef
fi

ci
en

cy

Landscape size

AGILE 2017 – Wageningen, May 9-12, 2017

treatments. The model time (defined previously) for each

treatment is reported in Figure 6. With larger 𝛼 values, model

time increases from 163 to 175 seconds, which confirms our

expectation that larger neighbourhood radii lead to more inter-

thread interactions crossing partitions and thus creating more

overheads for remote data access. However, increase in the

model time is relatively low compared to the entire model

time. Therefore, with the support of MIC, the impact of

neighbourhood radius on model performance is moderate.

Figure 6: Model execution time (second) with varying α for

MIC

6 Conclusions and future work

This study aimed to tackle the challenge of deficiency in

parallel processing of high-velocity spatial big data that

features fast changing patterns of spatial dependency over

time. We proposed to employ a many-core architecture, MIC,

to the resolution of this issue. An agent-based spatial

interaction model was customized to simulate massive

individual interactions and the changing interaction patterns

over time steps and to mimic a course of real-time data

processing with a certain velocity. We designed two groups of

experiments to evaluate the proposed approach in terms of

model scalability and performance. Compared to the NUMA

architecture, MIC achieves superior scalability in handling the

temporal variation of spatial interaction patterns even with a

simple parallelization strategy. In addition, the model’s spatial

characteristics pertaining to the volume and range of

interactions across space exerts moderate impact on model

performance, which is at an acceptable level. The assessments

validate the high efficiency of the MIC architecture in the

real-time processing of spatial big data. This can be attributed

to its dedicated enhancement for non-homogenous data

access, which could significantly reduce extra efforts in

parallelizing and optimizing existing codes. Future work may

include further evaluation on how the spatial characteristics of

interactions affect the scalability of model efficiency.

Comparison of MIC to other many-core architectures, such as

GPUs, is also worth more exploration with respect to the real-

time processing of spatial big data.

Acknowledgement

Support from US NSF XSEDE Supercomputing Resource

Allocation (SES170007) "Accelerating and enhancing multi-

scale spatiotemporally explicit analysis and modelling of

geospatial systems" is acknowledged.

References

Chapman, B., Jost, G. and Van Der Pas, R. (2008) Using

OpenMP: portable shared memory parallel programming.

Cambridge, MA: MIT Press.

Jeffers, J. and Reinders, J. (2013) Intel Xeon Phi coprocessor

high-performance programming. Newnes.

Gong, Z., Tang, W., Bennett, D.A. and Thill, J.C. (2013)

Parallel agent-based simulation of individual-level spatial

interactions within a multicore computing environment.

International Journal of Geographical Information Science,

27(6), pp. 1152-1170.

Gong, Z., Tang, W. and Thill, J.C. (2017) A graph-based

locality-aware approach to scalable parallel agent-based

models of spatial interaction. In: Griffith, D. A., Chun, Y. &

Dean, D. J. (eds.) Advances in Geocomputation. Springer,

Cham, Switzerland, pp. 405-423.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V.,

Giske, J., Goss-Custard, J., Grand, T., Heinz, S.K., Huse, G.,

Huth, A., Jepsen, J.U., Jørgensen, C., Mooij, W.M., Müller,

B., Pe’er, G., Piou, C., Railsback, S.F., Robbins, A.M.,

Robbins, M.M., Rossmanith, E., Rüger, N., Strand, E.,

Souissi, S., Stillman, R.A., Vabø, R., Visser, U., and

DeAngelis, D.L. (2006) A standard protocol for describing

individual-based and agent-based models. Ecological

Modelling, 198(1-2), pp. 115-126.

Weisbuch, G., Deffuant, G., Amblard, F. and Nadal, J.P.

(2002) Meet, discuss, and segregate!. Complexity, 7(3), pp.

55-63.

Wilkinson, B. and Allen, M. (1999) Parallel Programming.

Upper Saddle River, NJ: Prentice hall.

𝛼

M
o

d
el

 t
im

e
(s

)

