
1 Introduction 

Spatial interactions are omnipresent in a wide range of 

geographic phenomena, ranging from individual 

communication and information exchange to transportation 

flows and human migration at a more aggregated level, and 

from trading between regions and countries on the earth to the 

gravitational interaction between celestial bodies at coarser 

granularity. Agent-based models (ABMs) are well suited to 

capture the complexity of spatial interaction systems, because 

they characterize the spatiotemporal dynamics of global 

patterns emerging from local processes involving spatially 

distributed entities and the feedback of global-level 

emergence to the development of local interactions. Previous 

research has been dedicated to improving the scalability of 

spatial ABMs fed with big spatial data by taking advantage of 

various parallel computing resources in the emerging 

cyberinfrastructure (Gong et al., 2013; Gong et al., 2017). 

Specifically, the special parallel paradigm of Non-Uniform 

Memory Access (NUMA) has been proposed to tackle the 

uneven distribution of computing overhead caused by the 

heterogeneous patterns of spatial interactions. The known 

structure of interaction patterns and its constancy are assumed, 

so that the optimized decomposition and allocation of spatial 

domains across computing resources can be performed to 

minimize the data access cost and thus to enhance scalability. 

However, big spatial data feature not only large data volumes 

but also high velocity, such as real-time traffic information or 

social media feeds; this means that data streams come in so 

fast with constantly changing longitudinal patterns that are 

almost impossible to predict. This new challenge points out 

the deficiency of existing parallelization paradigms or 

approaches whose performance gain stems from determining 

the optimal parallelization strategy, given an interaction 

pattern; yet, it cannot keep up with the pace of pattern change 

of incoming data.  

In this study, we propose to employ a new many-core co-

processing platform, Many Integrated Core (MIC) 

coprocessors (Jeffers and Reinders, 2013), to resolve the 

performance issue for the parallelization of spatial interaction 

ABMs with high-velocity spatial big data. The MIC platform 

provides dedicated enhancements for non-homogenous data 

access without the interference of external optimization 

strategies for data access cost. This allows for a simplified 

external parallelization strategy that focuses on 

straightforward domain decomposition and load balancing, 

and may significantly reduce the extra effort in modifying and 

optimizing existing codes. By comparing the proposed 

paradigm applied to an ABM of spatial interactions with the 

previous NUMA paradigm, we demonstrate the superiority of 

the MIC platform over the other in terms of model scalability 

and performance. 

 

 

2 Agent-based spatial interaction models 

We use a hypothetical agent-based model to simulate the 

interaction between spatially situated individuals. Specifically, 

the interaction between individuals is reflected by an opinion 

exchange process as that in the bounded confidence model 

(Weisbuch et al., 2002). That is, individual agents (e.g., 

persons or households) are spatially distributed in a grid-based 

landscape. Each cell in the grid accommodates only one agent. 

Each agent will identify a neighbour to exchange opinion 

regarding an arbitrary topic via a neighbourhood setting. 

However, this communication is bounded by an assumption 

that, when two agents hold extremely different values, no 

opinion exchange occurs. Therefore, successful opinion 

exchange takes place based on a learning function (1), only 

when two agents hold similar enough opinions as set by a 

threshold 𝜎: 
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      𝑊𝑖
′ = {

(1 − 𝜌)𝑊𝑖 + 𝜌𝑊𝑖     𝑖𝑓 |𝑊𝑖 − 𝑊𝑗| ≤ 𝜎

𝑊𝑖                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (1) 

  

where 𝑊𝑖 and 𝑊𝑗  represent the current opinion values of 

agents i and j, 𝑊𝑖
′ is the new opinion value of agent i after 

communication, and 𝜌 is the learning rate.  

The temporal dimension of the opinion exchange follows an 

iterative process, where a series of time steps mimics a certain 

velocity of real-time data processing. At each time step, each 

agent has one opportunity to initiate an interaction with an 

identified neighbour. To create a different data pattern for 

each time step, agents follow a random sequence of 

interactions, which is realized via a shuffling mechanism at 

the beginning of every time step. Furthermore, we use a 

nondeterministic approach for neighbour identification, which 

increases the variation of data patterns over time steps. With 

the assumption of distance dependency, a circular 

neighbourhood is defined around each agent after the polar 

coordinate system. A distance-decay function (2) is used to 

relate the distance 𝐷𝑖𝑗 between an agent i and its neighbour j 

to the probability that i identifies j as its neighbour 𝑃𝑖𝑗. 

 

            𝑃𝑖𝑗 = 𝐷𝑖𝑗
1/−𝛼

                                 (2) 

 

where 𝛼 is a decay coefficient. Figure 1 demonstrates the 

effect of 𝛼 on distance with 𝑃𝑖𝑗 ≤ 0.01. In other words, 

varying parameter 𝛼 allows us to change the radius for 

neighbour search. During simulation, 𝑃𝑖𝑗 is randomly 

generated from a uniform distribution, and then 𝐷𝑖𝑗 can be 

determined by inverting equation (2) with a given parameter 

value for 𝛼. Together with a randomly selected azimuth 

between 1° and 360°, a neighbour can be identified using the 

polar coordinate pair (distance, azimuth). Figure 2 presents 

the model mechanism of our spatial interaction ABM via a 

flow chart (Grimm et al., 2006). 

 

Figure 1: The relationship between distance and 𝛼 with 

𝑃𝑖𝑗 ≤ 0.01 

 
 

3 MIC platform for parallel ABMs 

Intel’s MIC architecture is a many-core coprocessor platform 

that assists the main processors (i.e., CPUs) for certain types 

of computing tasks (e.g., floating point and graphics) in order 

to achieve better efficiency (Jeffers and Reinders, 2013). 

Another popular coprocessor platform is Graphical Processing 

Units (GPUs), which is dedicated to graphics processing in 

nature. As a many-core platform, a MIC chip integrates up to 

61 lightweight cores having a capability to provide 4 hardware 

threads on each core, which enables massive parallelism and 

high throughput. Compared to common multi-core processors, 

MIC supports smaller cores, more hardware threads, wider 

vector units and higher bandwidth for memory access. Due to 

MIC’s architectural compatibility, it is much easier to port 

existing sequential and parallel codes running on multi-core 

processors to MIC comparing to the GPU platform that 

typically involves rewriting or heavily modifying existing 

code to fit new programming models. 

Gong et al (2017) proposes multi-core platforms with 

NUMA architecture for parallel spatial ABMs with 

heterogeneous interaction patterns. The key to achieving a 

highly scalable performance for NUMA is that distributed and 

localized memories are attached to different processors, while 

local memories are also visible to remote processors (the left 

part in Figure 3). As a shared-memory system as well, MIC 

has distributed cores and GDDR memories (high-performance 

RAM with a high bandwidth designed for use in graphics 

cards) connected by a ring-shape, two-way circling, high-

speed interconnection bus for data communication (the right 

part in Figure 3). A comparison of MIC and NUMA is shown 

in Figure 3. It illustrates that, from a model parallelization 

perspective, the landscape of our ABM is decomposed into 

spatial partitions and the partitions are then assigned to 
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Figure 2: Flow chart of our parallel spatial interaction ABM 
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different memory spaces for parallel computing (the middle 

part in Figure 3). On a NUMA platform threads generated by 

cores compute the partitions in their local memories, while on 

a MIC platform each thread computes one of the partitions 

which are automatically distributed and managed by the 

platform. For both platforms, interactions between agents 

located in the same partition are intra-thread interactions, 

while interactions between agents located in different 

partitions are inter-thread interactions. Intra-thread 

interactions are less expensive because data access occurs 

within one local memory bank. In contrast, inter-thread 

interactions are much more costly due to the overhead caused 

by data access between different memory banks. Detailed 

parallel processing of our spatial interaction ABM is 

presented in Figure 2. 

 

 

4 Model implementation 

Our models are implemented on an Intel Xeon Phi SE10P 

Knights Corner MIC coprocessor on a PCIe card, which is 

hosted by a compute node in the Stampede supercomputer 

system from the Texas Advanced Computing Center. This 

MIC coprocessor contains 61 cores (1.1 GHz) and 8 GB of 

GDDR5 memory. For comparison, the models are also 

implemented on a compute node from a smaller Linux cluster. 

This node has 32 CPU cores (AMD Opteron 2.0 GHz) and 64 

GB of memory. Both implementations aim to exploit thread-

level parallelism and are coded in C++ and OpenMP 

(Chapman et al., 2008). The latter is a standard specification 

for multithreading programs running on shared-memory 

platforms. 

To assess the performance and scalability of our parallel 

models, two metrics, Speedup and Efficiency, are defined as 

follows (Wilkinson and Allen, 2004): 

 

𝑆 =
𝑇′

𝑇
, 𝐸 =

𝑆

𝑅
                                    (3) 

where 𝑇 is the execution time for a baseline model (e.g., 

sequential model), 𝑇′ is the execution time for a target parallel 

model, and 𝑅 is a ratio between the number of computing 

units used by the target model to the number of computing 

units used by the baseline model. For example, if a baseline 

parallel model uses 2 threads and the target parallel model 

uses 32 threads, 𝑅 = 16. 

 

 

5 Experiments 

To evaluate the performance of a MIC approach for the 

parallelization of our spatial interaction ABMs, experiments 

are designed to examine 1) the scalability of the parallel 

models on a MIC platform with a comparison to that for a 

NUMA platform, and 2) the impacts on the model 

performance when two spatial characteristics of the ABMs are 

changed. Throughout all experiments, at most 60 cores of the 

MIC coprocessor will be used with 4 threads running on each 

core. For the NUMA platform, only one thread per core will 

be used for its best performance. A straightforward horizontal 

decomposition strategy with balanced workload for each 

thread (Figure 3) is applied to parallel models for both 

platforms. This simplification is intentional in order to better 

single out the effect of the underlying platform on model 

performance.  

 

5.1 Scalability comparison 

We first examine the scalability of our parallel AMBs on both 

MIC and NUMA platforms as computing units utilized 

increase. For the convenience of comparison, we arrange a 

series of subsets of cores for both platforms to have the same 

number of treatments. The specifications regarding the 

number of cores/threads for all treatments are detailed in 

Table 1. This arrangement specifies that the baseline model 

for MIC uses 10 cores (40 threads) while for NUMA the 

baseline uses 1 core (1 thread). Therefore, the ratio 𝑅 

Figure 3: Comparison of MIC and NUMA architectures for the parallelization of spatial interaction ABMs 
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(Equation 3) for each treatment can be calculated accordingly. 

Table 1 also shows the computing times for models supported 

by MIC and NUMA platforms. The model time is the portion 

of total program execution time, excluding the shuffle time 

(the aggregated time taken to do shuffling at the beginning of 

each time step during a model run). Thus, the model time 

allows us to focus on the aggregated time taken for spatial 

interactions.  

         

 

Table 1: Comparison of MIC and NUMA in terms of model 

computing time (second) for different treatments (landscape 

size =  4000 x 4000 and 𝛼 = 0.1) 

MIC NUMA 

Threads/ 

Cores 
R Model 

Threads 

/Cores 
R Model 

40/10 1 975.03 1/1 1 3591.51 

80/20 2 501.50 2/2 2 2469.88 

120/30 3 323.30 4/4 4 1300.06 

160/40 4 243.57 8/8 8 697.26 

200/50 5 194.83 16/16 16 354.21 

240/60 6 162.56 32/32 32 163.17 

Note: the bolded row indicates baselines 

 

 

Note that all model runs in Table 1 have used the same set 

of parameters for spatial characteristics, landscape size = 4000 

x 4000 and neighbourhood radius 𝛼 = 0.1. To reduce the 

random effect, for each treatment 10 model runs are 

conducted and averaged results are obtained throughout all 

experiments in section 5. 

 

 

Figure 4: Comparison of model efficiency for MIC and 

NUMA 

 
 

Table 1 shows that MIC and NUMA achieve similar 

performance (162.56 vs. 163.17) for fully loaded systems, 

though MIC is slightly faster. Based on Table 1, Figure 4 can 

be created to compare the scalability of MIC and NUMA in 

terms of the Efficiency metric. For NUMA, as the computing 

units increase from 2 to 16, model efficiency drops to 0.63 

with an initial value of 0.73. Until the system is fully loaded 

with all cores (32 threads), the efficiency increases back to 

0.68. In contrast, model efficiency metrics for MIC are equal 

or close to 1 (perfect efficiency) over all treatments. Note that 

when 60 cores (240 threads) are used, the efficiency (0.97) is 

slightly lower than 1, which can be explained by the 

overheads generated from a large volume of inter-thread 

interactions between many partitions (240). In sum, the 

overall performance of model for NUMA is in the range of 

0.63 to 0.73, which is much lower than that for MIC across all 

treatments. This comparison confirms a superior scalability of 

the parallel models supported by MIC than that for NUMA. 

 

5.2 Impacts of spatial characteristics 

We turn to examine here how the MIC platform responds to 

the impacts of spatial characteristics of spatial interaction with 

respect to model performance. Specifically, two 

characteristics are under consideration, namely, landscape size 

and parameter 𝛼 for neighbourhood radius. 

Given a grid landscape, a series of sizes are included in the 

experiments, ranging from 1,000 x 1,000 to 10,000 x 10,000 

with a 1,000 x 1,000 interval. 𝛼 = 0.9 is set for all treatments. 

The aim is to examine how efficiently the model performs as 

the volume of interactions increases with an enlarging 

landscape size. We take a similar approach as the calculation 

of Efficiency for scalability in (3). The model with a size of 

1,000 x 1,000 is used as a baseline and the ratio R is 

calculated as the ratio of the size for a target model to the size 

of the baseline. Thus, we can obtain a metric indicating the 

efficiency of model performance with respect to landscape 

size, which is reported for each treatment in Figure 5. It 

illustrates that the parallel models exhibit very high 

performance with efficiency metrics close to 1 over all 

treatments and this performance is quite stable as landscape 

size increases. 

 

 

 

Figure 5: Model efficiency with respect to landscape size for 

MIC 

 
 

The second spatial characteristic, 𝛼, determines the radius to 

search a neighbour in spatial interactions. As reflected by 

Figure 1, larger 𝛼 means higher probability to identify a 

neighbour in a different partition, which may result in inter-

thread interaction and larger overheads for data access. The 

experiments use a series of 𝛼 values from 0.1 to 1.5 with an 

interval of 0.2. Landscape size of 4,000 x 4,000 is fixed for all 
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treatments. The model time (defined previously) for each 

treatment is reported in Figure 6. With larger 𝛼 values, model 

time increases from 163 to 175 seconds, which confirms our 

expectation that larger neighbourhood radii lead to more inter-

thread interactions crossing partitions and thus creating more 

overheads for remote data access. However, increase in the 

model time is relatively low compared to the entire model 

time. Therefore, with the support of MIC, the impact of 

neighbourhood radius on model performance is moderate. 

 

 

Figure 6: Model execution time (second) with varying α for 

MIC 

 
 

 

6 Conclusions and future work 

This study aimed to tackle the challenge of deficiency in 

parallel processing of high-velocity spatial big data that 

features fast changing patterns of spatial dependency over 

time. We proposed to employ a many-core architecture, MIC, 

to the resolution of this issue. An agent-based spatial 

interaction model was customized to simulate massive 

individual interactions and the changing interaction patterns 

over time steps and to mimic a course of real-time data 

processing with a certain velocity. We designed two groups of 

experiments to evaluate the proposed approach in terms of 

model scalability and performance. Compared to the NUMA 

architecture, MIC achieves superior scalability in handling the 

temporal variation of spatial interaction patterns even with a 

simple parallelization strategy. In addition, the model’s spatial 

characteristics pertaining to the volume and range of 

interactions across space exerts moderate impact on model 

performance, which is at an acceptable level. The assessments 

validate the high efficiency of the MIC architecture in the 

real-time processing of spatial big data. This can be attributed 

to its dedicated enhancement for non-homogenous data 

access, which could significantly reduce extra efforts in 

parallelizing and optimizing existing codes. Future work may 

include further evaluation on how the spatial characteristics of 

interactions affect the scalability of model efficiency. 

Comparison of MIC to other many-core architectures, such as 

GPUs, is also worth more exploration with respect to the real-

time processing of spatial big data.   
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