
1 Introduction

An essential task for designing meaningful and appealing maps
is an adequate labeling of relevant map features. Map labeling
is an established research area. Many algorithms have been
developed and evaluated in the last decades. Thus, standard
GIS packages provide (more or less) sophisticated tools for
map labeling (Brewer 2005).

In web cartography, the situation is slightly different. First,
we have to distinguish between server-side and client-side map
generation. On the server side two cases typically occur: In the
first case, map tiles are pre-processed. Then, the labeling can
be extensively pre-computed for each zoom level. Google
Maps (Figure 2a), Microsoft Maps and the OGC Web Map Tile
Service (WMTS) are prominent examples for such procedure.
From user and application perspective, however, such labels
are fixed; it is not possible to define a different alignment or
density suitable for specific applications. In the second case,
the map is computed by the server dynamically according to the
user request. The ISO/OGC Web Map Service (WMS) works
like this. In principle, this approach allows an application- and
user-defined styling and labeling by using Styled Layer
Descriptions (Lupp 2007).

Map-based mashups combine application-specific
georeferenced features requested from a spatial database with a
base map (Brinkhoff 2007). A web browser performs the
combination generally by using JavaScript-based APIs like the
Google Maps JavaScript API or OpenLayers API. Former
mashups worked often with symbols drawn independently
from the current zoom level. The result were illegible maps
showing too many symbols in smaller scales (Figure 2b). The
situation has altered in the meantime: current mashups change

the visibility of symbols depending on the current scale; often
they combine clustered features by depicting a group symbol
(together with the number of features) in smaller scales (Figure
2c).

If we consider the labeling of application-specific features,
we observe following situation: Mostly no labeling is
performed or the symbols show numbers referring to a list of
objects depicted elsewhere (Figure 2d). What are the reasons?
An obvious answer would be that we do not need a labeling
anymore (a) because the labeling in base map is sufficient
and/or (b) because a tooltip or an information box are provided
after hovering over or clicking on a symbol. Answer (a) is
clearly wrong because labels in the base map are independent
from application objects. Thus, the base map provides
orientation but allows no object identification. In many cases,
the labels in the base map lead to misleading identifications like
it is illustrated in Figure 1.

Figure 1. The symbol does not refer to the settlement

“Warsingsfehn” but to the municipality “Moormerland”.

Supporting Dynamic Labeling in Web Map Applications

 Thomas Brinkhoff
Jade University of Applied Sciences

Institute for Applied Photogrammetry and
Geoinformatics (IAPG)

Ofener Str. 16/19
26121 Oldenburg, Germany
thomas.brinkhoff@jade-hs.de

Abstract

Web mapping based on client-side application programming interfaces (APIs) is very popular, especially for mashups. However, we can
observe that most of these applications use no labeling. Thus, fast comprehensibility of such maps is hindered. In this paper, we investigate
the reasons for this situation. Based on this analysis, a specification is presented that fosters the use of dynamic point labels in web map
applications. This concept is abstract, simple to use, flexible and can be combined with a grid-based management of symbols. We demonstrate
the applicability of this approach by a prototype that performs a browser-based dynamic labeling.

Keywords: Web cartography, dynamic map labeling, mashup, application programming interface (API)

AGILE 2017 – Wageningen

Figure 2. (a) Base map with labels, (b) map overloaded with
symbols, (c) map with combined symbols, and (d) map with

grey symbols that contain numbers as labels.

Tooltips and information boxes require (at least) moving the
mouse cursor to a map symbol. Such an approach takes
considerable time and does not provide an immediate overview
like labels. Thus, there exist other – more technical – reasons
for missing labels in mashups. One technical restriction is that
the labeling of application-specific objects must be computed
dynamically by a web client because a user can typically filter
the objects that should be displayed (e.g., all hotels in the price
span of 60€ to 120€ per night). Therefore, a pre-processed
labeling is not helpful.

The rest of the paper is organized as follows: After presenting
related work, specifications and APIs in the next section, the
obstacles for labeling maps by web clients are discussed in
detail. Section 4 presents extensions to existing specifications
and APIs that would eliminate these hurdles for point labels. A
corresponding prototype is illustrated in section 5. The paper
concludes with a summary and an outlook to future work.

2 Related Work

2.1 Map Labeling

Positioning labels on a map is a traditional cartographic
problem (Imhof 1975) (Yoeli 1972). Algorithmic labeling is
topic in the field of cartography as well as in the field of
algorithmic geometry. Formann & Wagner (1991) showed that
this problem is NP-hard. Thus, work on map labeling tries to
find good approximations but not optimal solutions. For web
applications that compute labels by the client, we strive for fast
algorithms. In return, the resulting labeling may have some
faults, e.g., collisions or less labels than possible. Several
feasible algorithms have been developed, e.g., (Wagner &
Wolff 1997) (Petzold et al. 2003) (Been et al. 2006). There are
also proposals with special focus on web and mobile mapping,
e.g., by Bereuter & Weibel (2012) and by Zhang & Harrie
(2006).

According to Been et al. (2006) we have three base
operations for a fast labeling (“in interactive speed”): (1) a
filtering operation that reduces the large set of labels to a
manageable (i.e. much smaller) set of labels, (2) a selection
operation that determines the actually displayed labels, and (3)
the placement of the labels. These operations can be
intertwined.

2.2 OGC Specifications

The OGC introduced with the Styled Layer Descriptor
Implementation Specification (SLD 1.0) an XML specification
for WMS styles (Lalonde 2002). It can be used for selecting
predefined (“named”) styles or for defining user styles for
existing layers (“named layer”) or user-defined geometries
(“user layer”). Styling rules can be defined by scale ranges or
more freely by using OGC/ISO Filter Encoding. “Symbolizers”
define the styling of a concrete geometry type – text labels are
supported by “TextSymbolizers” (see Section 3.1). For
broadening its application range, the OGC spilt SLD 1.0 some
years later into two specifications: Symbology Encoding (SE)
for pure style definition (Müller 2006) and Styled Layer
Descriptor Profile of the WMS (WMS-SLD 1.1) for its
coupling with web map services (Lupp 2007). SE provides
more styling capabilities than SLD 1.0.

AGILE 2017 – Wageningen

2.3 Web Map Servers

Web map servers need style definitions especially for
computing WMS raster maps on the fly. In contrast to client-
side web applications, they underlie no restrictions with respect
to the executing engine (web browser) or the programming
language (JavaScript).

GeoServer supports SLD for defining styles. For solving
label conflicts, GeoServer supports a proprietary “Priority”
element. The numeric value can be constant for a layer or it can
be retrieved from the feature or be calculated. “If the Priority
element is not present, or if a group of labels all have the same
priority, then standard SLD label conflict resolution is used.
Under this strategy, the label to display out of a group of
conflicting labels is chosen essentially at random.” (GeoServer
2016)

The MapServer defines styles by proprietary “mapfiles”. The
main properties for the discussion in this paper are the
“PRIORITY” parameter, an integer value that can be constant
for a layer or be taken from a feature attribute, and the
“POSITION” parameter that defines the position of the label
relative to an anchor point (e.g., “ul” means upper left).
Alternatively, an “Auto” value tells to calculate a label position
automatically not interfering with other labels. If all possible
positions cause a conflict, then a label is not drawn.
“POSITION” can only be defined for layers (MapServer 2017).

3 Obstacles for a Dynamic Map Labeling

Several impediments hinder developers of web applications to
perform a labeling on web clients.

3.1 Symbology Encoding

As discussed before, SE (Müller 2006) is the current
specification for defining styles in general and text labels in
particular for geospatial web services. A “TextSymbolizer”
includes a “Label” element, which specifies the text of the label
by an attribute name or an expression, and a “LabelPlacement”
element, which is defined either by a “PointPlacement” or a
“LinePlacement” element. A “PointPlacement” is suitable for
labeling point symbols and allows the specification of an
anchor point, a displacement and a rotation. An anchor point is
relatively defined with respect to the bounding box of the label
by “AnchorPointX” and “AnchorPointY” elements.
“Displacement” elements allow defining a distance of the label
to a symbol in a defined unit of measure. In case of a
“LinePlacement”, a perpendicular offset to the line, a repeat
flag, a horizontal alignment, gaps and a generalization flag can
be specified. The last property allows simplifying geometries.

We can summarize that SE does not provide an abstract,
simple-to-use specification for visibility and text alignment that
can be used for dynamic labeling. The handling of conflicts is
shifted to an implementing “system”.

3.2 Client-side Web Map APIs

There exist several APIs for programming client-side web map
applications.

The Google Maps JavaScript API (Google 2016) does not
directly support labels. Text elements can be added by user-
defined overlays that consist of HTML block elements with

text. The Google Maps Utility Library (Google 2014) provides
a “Map Label” class with a fixed label per symbol.

The ArcGIS API for JavaScript allows specifying the labeling
by using the “setLabelingInfo” method of a “FeatureLayer”
(Esri 2016). This method gets “LabelClass” objects with
following relevant attributes as argument:
 “labelExpression” (adjusts the formatting of labels),
 “minScale”/”maxScale” (number),
 “labelPlacement” (single (!) value of above-left/center-

left/below-left/…),
 “sizeInfo” (defines the symbol size changes),
 “where” (selects labeled features by a SQL clause).

The OpenLayers 3 API (OpenLayers 2016) supports text labels
for vector features by a “style.Text” class. Beside pure styling
properties, it consists of:
 “text”: the label text,
 “offsetX” / “offsetY”: horizontal / vertical offset in

pixels,
 “rotation”,
 “scale” (number),
 “textAlign” (left/right/...) and
 “textBaseline” (bottom/top/…).

We can summarize that current client-side web map APIs
provide a restricted, heterogeneous support for dynamic
labeling. There exist no simple-to-use, abstract interface that
allows the user to define the behavior of the labeling.

4 Supporting Dynamic Labeling

Web application developers should easily use and configure
dynamic labeling. An individual pre-computing of the visibility
range or of the alignment of each label is not a feasible solution.
Dynamic labeling has to address a wide range of web map
applications. Therefore, it should be as flexible as possible. On
the other hand, web browsers on different types of devices
(desktop PC as well as mobile devices) must handle dynamic
labeling. Thus, the algorithms used should be as simple as
possible; suboptimal solutions for the label placement are
acceptable.

For extending an API or a document specification (like SE),
we have to define a set of properties with respect to a feature, a
layer or the map. Considering the previous requirements and
obstacles as well as the experiences with several web
applications, we propose the following properties for the case
of features represented by point symbols with labels. Most of
these properties are defined as functions in order to allow
returning a stored attribute value as well as the result of a
computation. Pure styling properties (e.g., symbol size, font
family, text decoration, color, etc.) are not considered here.

EnableLabeling (Map Property and Layer Property as
Boolean)
These properties enable or disable the labeling for the complete
map or for single layers. The labeling will only be applied for
a layer, if the labeling is enabled for both, the map and the layer.

LabelText (Feature Function returns String)
The label text may be an attribute value or is computed.

AGILE 2017 – Wageningen

Priority (Feature Function returns Float)
The priority is the most abstract form to regulate the visibility
of an object. A feature function provides the priority as a
numerical value. This gives highest flexibility and simplifies
the use by a single point of access. The function may return an
attribute value, may compute the priority individually or may
call a function of the layer the feature belongs to. In case of
using objects from different layers, the application designer has
to normalize the priorities. A default priority should exist.

MinZoomLevelViz, MaxZoomLevelViz (Feature Functions
return Integer)
In addition, it may be reasonable to guarantee the visibility of
an object. Two optional parameters allow defining an open or
closed range of zoom levels. If the range is set, features will be
always depicted if the current zoom level is within the range
(also in the case of collisions!).

MinZoomLevelNoViz, MaxZoomLevelNoViz (Feature
Functions return Integer)
Furthermore, it may be reasonable to restrict the visibility of an
object. Two optional parameters allow defining an open or
closed range of zoom levels. If the range is set, features will be
never depicted if the current zoom level is outside the range.

SymbolVisibilityBehavior (Feature Function returns String)
A label will generally not be drawn, if the symbol is not visible.
In opposite direction, the situation is not straightforward:
Symbols may be depicted with or without label. Thus, we have
to define this behavior. Three values are reasonable:
“SymbolAlwaysWithLabel”, “SymbolMayWithoutLabel” or
“SymbolWithoutLabel”. In the first case, the label of a symbol
is nonetheless drawn, even if it is in an unsolvable conflict with
other symbols or labels. In the second case, only the symbol
would be drawn is such situations. The “SymbolWithoutLabel”
can be used in cases like an opened information box. The
default behavior is “SymbolAlwaysWithLabel”.

ScaleFactor(CurrentZoomLevel as Integer) (Feature
Function returns Float)
It is often reasonable to adapt the base size of symbol and label
depending on the current zoom level. This optional function
returns a scaling factor for a given zoom level. Typically, the
layer an object is belonging to would provide such a function.
However, for some selected features a different scaling may be
appropriate. A reasonable default value is 1.

Alignments (Feature Function returns List<Alignment>)
MapServer distinguishes between a given alignment and an
automatic alignment. That approach seems to be too restricted.
If an alignment is computed (especially in larger zoom levels),
there may exist several possible alignments. Some of these
alignments may be preferred for special feature types or
applications. Therefore, it should be possible to define a list of
alignments starting with to most preferable alignment and
ending with the most undesirable alignment. Alignments that
are not contained in this list are not applied. A default list of
alignments should be provided.

5 Prototype

We developed a prototype on top of the Google Maps
JavaScript API for investigating the feasibility of the presented
approach.

In the following examples, cities were depicted using a
symbol according to their population class and a label of their
name. The priority was set to the population attribute of the
cities. The visibility behavior corresponds to
“SymbolAlwaysWithLabel”. The scale factor depends on the
zoom level. Eight different alignments were allowed in the
following order: “center-east”, “center-west”, “north-center”,
“south-center”, “north-east”, “north-west”, “south-east”, and
“south-west”.

Figure 3. Map in different zoom levels.

We implemented a simple grid-based algorithm for a combined
symbol selection and dynamic labeling in JavaScript. The
filtering step (see Section 2.1) is performed by using the bounds

AGILE 2017 – Wageningen

of the current viewport, the selection step is done by the grid
and the feature priority (i.e., n features with the highest priority
per grid cell are selected), and finally the alignment is
determined for labels of selected features by testing neighbored
features for collision. Because the scale function adapts symbol
and label sizes, the grid size becomes smaller with decreasing
zoom levels (Figure 3).

We tested the prototype with maps consisting of several
thousand points. Even in such cases, dynamic labeling leads to
no noticeable delay. Thus, it is also triggered every second
while a pan operation is performed (Figure 4).

Figure 4. Map panned from west to east.

6 Conclusions

Several technical obstacles for missing support of dynamic
labels have been identified and discussed in this paper. We need
especially simple-to-use APIs that support dynamic labeling
for web applications. A concept for introducing labeling into
web map APIs for the case of point symbols has been
presented. Its main advantages are:
 The concept is sufficiently abstract – visibility is

primarily controlled by a priority function and not by
individual scale ranges.

 The concept is simple to use by a defined default
behavior. The only required steps are to define a label
text function and to enable the labeling.

 The concept is flexible; it allows the definition of
additional properties for improving the labeling or for
handling special situations.

 The concept can be combined with a grid-based
management of symbols.

Future work consists of extending the proposed concept to line
and area features. In addition, a prototype for the OpenLayers
API is planned. Finally, performance investigations with
respect to JavaScript environments are of interest.

References

Been K., Daiches E. & Yap C. (2006) Dynamic Map Labeling.
IEEE Transactions on Visualization and Computer Graphics,
12(6): 773–780.

Bereuter P. & Weibel R. (2012) Real-time generalization of
point data in mobile and web mapping using quadtrees.
Cartography and Geographic Information Science 40(4): 271–
281.

Brewer C.A. (2005) Comparison of GIS and Graphics Software
for Advanced Cartographic Symbolization and Labeling: Five

GIS Projects. Proceedings of the International Cartographic
Association Conference.

Brinkhoff T. (2007) Increasing the Fitness of OGC-Compliant
Web Map Services for the Web 2.0. 10th AGILE International
Conference on Geographic Information Science. In: The
European Information Society, Lecture Notes in
Geoinformation and Cartography, 247–264.

Esri Inc. (2016) ArcGIS API for JavaScript Reference 3.19.
https://developers.arcgis.com/javascript/jsapi/. [Accessed 4
February 2017].

Formann M. & Wagner F. (1991) A packing problem with
applications to lettering of maps. Proceedings 7th Annual ACM
Symposium on Computational Geometry, 281–288.

GeoServer (2016) GeoServer 2.10.x User Manual – SLD
Styling.
http://docs.geoserver.org/stable/en/user/styling/sld/index.html.
[Accessed 4 February 2017].

Google Inc. (2014) Map Label – A Google Maps JavaScript
API utility library. https://github.com/googlemaps/js-map-
label. [Accessed 4 February 2017].

Google Inc. (2016) Google Maps Javascript API V3 Reference.
https://developers.google.com/maps/documentation/javascript
/reference. [Accessed 4 February 2017].

Imhof E. (1975) Positioning Names on Maps. The American
Cartographer, 2(2):128–144.

Lalonde W. (ed.) (2002) OGC Styled Layer Descriptor
Implementation Specification, Version 1.0.0, OGC 02-070.

Lupp M. (ed.) (2007) OGC Styled Layer Descriptor profile of
the Web Map Service Implementation Specification, Version
1.1.0 (revision 4), OGC 05-078r4.

MapServer (2017) MapServer 7.0.4 Documentation – Map File
– LABEL. http://mapserver.org/mapfile/label.html. [Accessed
4 February 2017].

Müller M. (ed.) (2006) OGC Symbology Encoding
Implementation Specification, Version 1.0.0 (revision 4), OGC
05-077r4.

OpenLayers (2016) OpenLayers 3 API Documentation.
http://openlayers.org/en/latest/apidoc/. [Accessed 4 February
2017].

Petzold I., Gröger G. & Plümer L. (2003) Fast Screen Map
Labeling – Data Structures and Algorithms. Proceedings 23rd
International Cartographic Conference, 288–298.

Wagner F. & Wolff A. (1997) A practical map labeling
algorithm. Computational Geometry 7:387–404.

Yoeli P. (1972) The logic of automated map lettering. The
Cartographic Journal, 9(2):99–108.

Zhang Q. & Harrie L. (2006) Real-Time Map Labelling for
Mobile Applications. Computers, Environment and Urban
Systems, 30(6): 773–783.

