
1 Introduction 

In the past couple of years, crowdsourcing approaches have 
been increasingly used to produce geographic information from 
remotely sensed imagery to complement official information 
regarding human settlements (Albuquerque, Herfort, & Eckle, 
2016). Previous research has shown, that crowdsourced 
classification can be feasible to produce high quality 
geographic data for several use cases like land use monitoring 
or disaster response (Albuquerque et al., 2016; Fritz et al., 
2009; Imran, Castillo, Meier, & Diaz, 2013; Schepaschenko et 
al., 2015). Nevertheless, some authors also highlight 
difficulties in specific areas, e.g. for damage assessment (Kerle 
& Hoffman, 2013; Westrope, Banick, & Levine, 2014). The 
quality of information produced by volunteers may vary not 
only across different application domains, but also in relation 
to the several types of crowdsourcing tasks that volunteers can 
undertake (Albuquerque et al., 2016). 

The Missing Maps project is one example that shows how a 
community of volunteers and humanitarian organizations can 
work together and produce crowdsourced geographic 
information. In this context, the MapSwipe App was recently 
introduced to enable volunteers to classify satellite imagery 
from their mobile phones. The biggest advantage of this new 
generation of crowdsourcing tools for mobile devices is to 
lower the entry barrier for volunteers, who do not need special 
mapping skills and can use their smartphones to contribute 
whenever they may have some time to spare (e.g. during 
commuting). However, this also raises concerns about the 

quality of the data produced by volunteers in these variable 
conditions: are they as reliable as it was proven to be the case 
on other crowdsourcing applications? 

To answer this question, we present in this paper an initial 
analysis of the quality of the data produced by volunteers using 
the MapSwipe app. Since reference data is often not available 
to compare with crowdsourced results, we apply an intrinsic 
approach based on the agreement between volunteers and on 
indicators of inter-rater reliability. Furthermore, we investigate 
factors that may have an influence on the agreement between 
volunteers, and thus negatively impact the quality of the 
produced information. 

The remainder of this paper is organized as follows. In 
Section 2 we describe our case study and give detailed 
information on the crowdsourced data collection using the 
MapSwipe App. Section 3 presents our methodology. In 
Section 4 we present the results of our analysis. Finally, the 
results are discussed and final remarks are presented to 
conclude this paper in section 5. 

 
2 Case Study 

In November 2014, the American Red Cross, the British Red 
Cross , the Humanitarian OpenStreetMap Team (HOT) and 
Doctors Without Borders/Médecins sans Frontiers (MSF) 
established the Missing Maps project. This project is aimed at 
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“putting the most vulnerable people on the map”1. Within this 
project, MSF developed the MapSwipe App, a mobile 
crowdsourcing application to derive geographic information 
from satellite imagery. In MapSwipe, volunteers are asked to 
classify tiles of satellite imagery into four different classes 
(“No”, “Yes”, “Maybe”, “Bad Imagery”). By tapping and 
swiping on the mobile device they can signal whether they were 
able to spot human settlements. The users can choose between 
several projects, e.g. in different countries. For each project a 
short introduction and guidance are given. Figure 1 shows two 
example screenshots from the MapSwipe project “Madagascar 
9”. 

The image on the left-hand side shows how the users can 
classify the imagery by tapping. If the volunteer doesn’t 
interact at all, this will be regarded as a “No” classification. On 
the right hand side the mapping interface is shown. On top of 
the interface volunteers are instructed what features they are 
looking for (for this project they search for buildings). The 
main part of the screen is divided into 6 squares, each square 
representing a single classification task with a width and height 
of approximately 150 meters. 

Another important concept within the MapSwipe app are 
“groups”. When volunteers are using the app, they will always 
work on a group of tasks. Each group has a height of three tiles 
and a width of approximately 60-70 tiles depending on the 
shape of area of interest. Overall, each group is represented as 
an elongated east-west band containing about 200 tiles. At the 
bottom of the screen, a progress bar indicates how many tiles 
have already been classified within the specific group. The 
results will be uploaded not until the user completed the group. 

In our case study, we use MapSwipe data from two projects. 
The project “Madagascar 1” was created on 30th July 2016 and 
finished by 2nd November 2016 and covers the northernmost 
part of the state. The project was managed by the French NGO 
CartONG2. The project “South Sudan” was created on 23rd 
November 2016 and finished by 19th January 2017. It was 
managed by MSF Czech Republic. The data produced by the 
volunteers is released under the CC-BY-4.0 license and was 

                                                                 
1 http://wiki.openstreetmap.org/wiki/Missing_Maps_Project 
26.01.2017 

obtained from the MapSwipe-API.3 Through the MapSwipe-
API we downloaded information on every single classification 
(result, user name, timestamp) and the completed count for 
each group.  

Table 1 provides an overview of both projects. The table 
shows that both projects cover approximately the same area 
(circa 6000 km2) and a comparable number of users (~850) 
contributed to each project. While the project “Madagascar 1” 
is in a rural area, the project “South Sudan” covers a more 
densely settled area. In the projects used in this case study each 
group was assessed by at least 3 individuals. For both projects 
the median of evaluations per task is 4. The variance for the 
project “Madagascar 1” is 224.0, the corresponding value for 
the project “South Sudan 1” is 3.3. 

 
Table 1: MapSwipe projects information. 

 
 
3 Methodology 

In this section the overall methodology will be presented. In 
the first step, we compute the agreement between different 
volunteers on the individual task level. For each task, we assign 
the total number of classifications and the number of the 
distinct count for each individual class (“No”, “Yes”, “Maybe”, 
“Bad Imagery”). The agreement level among volunteers is 
calculated using Equation (1),  as the proportion of agreeing 
pairs of classifications out of all the possible pairs of 

2 http://www.cartong.org/ 26.01.2017 
3 http://mapswipe.org/index.html 26.01.2017 

Name Madagascar 1 South Sudan 1 

Area (km2) 6270.5 5800.3 

Groups 1,388 1,286 

Tasks 278,688 257,789 

Contributions 989,193 874,418 

Users 867 837 

Figure 1: The MapSwipe App 



AGILE 2017 – Wageningen, May 9-12, 2017 
 

assignments, following (Fleiss, 1971). Accordingly, n is the 
number of ratings per subject (i.e., a tile in our case), k is the 
number of categories into which assignments are made (four in 
our case), and nij is the number of raters which assigned the i-
th subject to the j-th category. This method allows us to 
compare tasks for which we obtained a different number of 
classifications.  

 

௜ܲ =
ଵ

௡∗(௡ିଵ)
∗ ∑ ݊௜௝

ଶ − ݊௜௝
௞
௃ୀଵ  (1) 

 
In the next step, we compute the inter-rater reliability for 

tasks within the corresponding groups of the MapSwipe 
project. The inter-rater reliability is a statistical measure to 
analyze the agreement between multiple raters by comparing to 
the agreement between these raters that they could obtain by 
chance. Fleiss kappa is calculated according to Fleiss (1971) as 
presented in Equation (2). In this equation തܲ corresponds to the 
mean of the ௜ܲ’s and ௘ܲഥ  to the sum of the squared proportions 
of all assignments which were to each individual class. The 
higher the kappa value (max. 1) the stronger the agreement 
between the raters. 

 

ߢ =
௉തି௉೐തതത

ଵି ௉೐തതത (2) 

 
Furthermore, we analyze the spatial distribution of agreement 

per task and perform Moran’s I for all tasks to test for spatial 
autocorrelation of the agreement values (Moran, 1950). This 
analysis is conducted to investigate whether the observed 
disagreement is randomly distributed or spatially clustered. By 
calculating Moran’s I, we are able to analyze to what degree 
disagreement is caused by systematic factors of the underlying 
geographical phenomena (e.g. patterns represented in the 
satellite imagery). 

In the next step, we present insights on all tasks, where 
volunteers disagreed (all tasks where agreement < 1). In our 
analysis, we differentiate between seven cases of disagreement. 
An investigation of the observed quantities can give first 
information on common false conclusions or 
misunderstandings by different volunteers. The cases consist of 
tasks where: 

 
a) Only “Yes” and “No” contributions were captured 

(referred to as: “Yes-No”) 
b) Only “Yes” and “Maybe” contributions were 

captured (referred to as: “Yes-Maybe”) 
c) Only “Yes” and “Bad Imagery” contributions were 

captured (referred to as: “Yes-Bad”) 
d) Only “No” and “Maybe” contributions were 

captured (referred to as: “No-Maybe”) 
e) Only “No” and “Bad Imagery” contributions were 

captured (referred to as: “No-Bad”) 
f) Only “Maybe” and “Bad Imagery” contributions 

were captured (referred to as: “Maybe-Bad”) 
g)  More than two different classes were observed 

(referred to as: “other”)  

Finally, we provide first qualitative details on the most 
common cases of disagreement and we show several examples. 
We then discuss to what degree clouds, large settlements and 

missing satellite imagery are patterns that can be associated 
with specific cases of disagreement. 

 

4 Results 

In this section, we present the results of our initial analysis. 
The average agreement among volunteers for the Madagascar 
project is 0.900 with a standard deviation of 0.218. For South 
Sudan, it’s 0.868 with 0.252. Figure 2 and Figure 3 depict the 
distribution of  agreement per task using violin plots (which 
combine a density chart with a box plot). In both projects, the 
agreement among volunteers was very high (0.8 – 1.0) for the 
clear majority of all tasks. However, there are also tasks with 
an agreement lower than 0.4. 

 
Figure 2: Agreement "Madagascar 1" 

 
Figure 3: Agreement "South Sudan 1" 

 
Figure 4: Inter-rater reliability per group ("Madagascar 1") 
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Figure 5: Inter-rater reliability per group ("South Sudan 1") 

 
The inter-rater reliability of the analyzed groups shows a 

reasonable performance. As depicted in Figure 4 and Figure 5 
the average kappa is around 0.5 per group and the majority of 
groups has a kappa greater than 0.4 indicating a moderate 
agreement among volunteers for most groups applying the 
scale presented by Landis & Koch (1977). Only few groups 
show a poor agreement lower than 0.2, while there is a 
considerable number of groups where the kappa is even higher 
than 0.6. These characteristics also apply for the project “South 
Sudan 1” although there is a stronger bias between groups with 
good agreement and groups showing poor agreement. 

Figure 6 visualizes the spatial distribution of the agreement 
per task for both MapSwipe projects. The visual interpretation 
of the map suggests that tasks where volunteers disagree are not 
distributed randomly, but rather systematically. There are areas 
with a high concentration of disagreement such as in the 
northern part of the study area of the project “Madagascar 1”. 
These high concentrations of disagreement are also present for 
the project “South Sudan 1”, e.g. south eastern part. 
Furthermore, the map depicts bands with a width of about 1.5 
– 2.5 kilometers where users disagreed. One example for this 
can be found in the project “Madagascar 1”, where a band of 
disagreement is spanning through the whole study area from 
north to south. Finally, the visual interpretation also reveals 
vertical stripes of disagreement that overlap entirely with 
individual group geometries. This may be an indicator for a 
systematic mismatch among volunteers within specific groups. 

The analysis of spatial autocorrelation demonstrates a 
Moran’s I of 0.508 with a z-value of 377.488 and a p-value 
< 0.001. The high z-value and low p-value confirm the visual 
interpretations of a spatially autocorrelated distribution of 
agreement. The data from South Sudan also shows a significant 
spatial autocorrelation indicated by a Moran’s I of 0.442 (z-
score 244.40; p-value < 0.001). For both projects the agreement 
is significantly clustered and thus we conclude that the 
disagreements among volunteers are not randomly distributed, 
but caused by the underlying geographical phenomena depicted 
in the satellite imagery. 

We differentiated the cases of disagreement for all tasks, 
where the agreement value was lower than 1 (consensus tasks). 
The observed task numbers regarding the different cases (a)-(f) 
of disagreement are presented in table 2. The table indicates 
that there are three common cases of disagreement: a), d) and 
e). Together these different cases make up to more than 80% of 

the tasks where volunteers disagreed for both projects. For the 
project “Madagascar 1” about 50% of the tasks are of type e). 
This indicates that there is no clear understanding among 
volunteers what’s the difference between “No” and “Bad 
Imagery” classification. For the project “South Sudan 1” most 
tasks are of type a).  

 
Table 2: Cases of disagreement 

 
Figure 7 visualizes the spatial distribution of the different 

cases of disagreement. The visual interpretation of the data 
indicates that the different cases of disagreement come along 
with different spatial pattern and characteristics. 

For “No-Bad” cases three different subcases exist. Bands 
from north to south indicate tasks for which no satellite imagery 
was available. Nevertheless, a considerable number of 
volunteers didn’t classify accordingly and chose “No” instead 
of “No/Bad Imagery”. Furthermore, the same applies for 
clouds. This subcase of “No-Bad” shows a rather concentrated 
and not stretched distribution. Finally, some volunteers 
misunderstood the meaning of tapping 3-times on the screen as 
“No” and therefore classified whole groups by mistake as 
“No/Bad Imagery”, although they may just have wanted to 
indicate that there is no building. This is the cause of the 
vertical, group-wise stretch of “No-Bad” cases. Figure 8 
provides examples for these cases. 

“Yes-No” cases are often associated with tasks showing large 
settlements. Accordingly, the number of tasks with “Yes-No” 
disagreement rises the more settlements exist within the project 
area . This may be an indicator why the numbers are higher for 
the project “South Sudan”.  

Finally, “No-Maybe” cases show only slight spatially 
clustered characteristics, but not as strong along the bands as 
the other cases. This is indicated by a Moran’s I of 0.227 (z-
score 168.69; p-value < 0.001) for “Madagascar 1” and by a 
Moran’s I of 0.145 (z-score 78.92; p-value < 0.001) for “South 
Sudan 1”. From examples, we conclude that some of these 
cases consist of small geographical features that appear to be 
houses, but missing some of the typical characteristics of 
houses like rectangular shape or a clearly identifiable rooftop. 
Others consist of typical spatial indicators for nearby housing 
like tracks and flattened areas, but without objects that can 
undoubtedly identified as houses.  

 Madagascar South Sudan 

Case Name # % # % 

(a) “Yes-No” 9,439 18.3 23,098 38.9 

(b) “Yes-
Maybe” 

849 1.6 1,498 2.5 

(c) “Yes-
Bad” 

601 1.2 661 1.1 

(d) “No-
Maybe” 

9,230 17.9 11,643 19.6 

(e) “No-Bad” 24,257 47.0 14,969 25.2 

(f) “Maybe-
Bad” 

1,134 2.2 482 0.8 

(g) “other” 6,077 11.8 7,047 11.9 

 total 51,587 100 59,398 100 
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Figure 6: Spatial distribution and autocorrelation of agreement per task 

Figure 7: Spatial distribution of different cases of disagreement 

Figure 8: “No-Bad” disagreement (Imagery: Microsoft Bing) 
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5 Discussion 

The results of this study show, that crowdsourced 
classification of satellite imagery using the mobile application 
MapSwipe produces reasonable information on human 
settlements, which seem to be similar to other crowdsourcing 
approaches and projects, e.g. as described by Porto de 
Albuquerque et al. (2016) or Arcanjo et al. (2016). 

Nevertheless, the results also emphasize that there was 
disagreement between volunteers for a significant number of 
tasks. However, such disagreement cases appear not to be 
random. Their spatially clustered distribution suggests that they 
are systematically caused by underlying factors. In this study, 
we observed that clouds, missing satellite imagery and the 
behavior of individual users are common causes for 
disagreement among volunteers. The resulting disagreement 
cases may potentially reduce the quality of the crowdsourced 
information and thus need to be addressed in future 
applications. 

The insights of this initial study may be used to indicate 
which types of classification tasks are not well understood by 
volunteers. Thus, the results may be useful to improve the 
instructions and the design of the mobile crowdsourcing 
applications, such as MapSwipe. This is especially important 
for ambiguous cases like tasks in which a large part of the 
imagery contains clouds, but some single buildings are also 
identifiable. Further enhancement of the application (e.g. 
different interfaces for different screen sizes) or more 
comprehensive instructions (e.g. an interactive tutorial with 
messages and example images) for volunteers could minimize 
the impact of these factors of disturbance and thus improve the 
quality of the resulting geographic information. 

The overall inter-rater reliability for individual groups of the 
MapSwipe projects has shown fair agreement among 
volunteers. In the field of building damage assessment 
Westrope et al. (2014) found a low kappa of 0.22, while David 
et al. (2016) reach a value greater than 0.8 for the majority of 
classifications regarding twitter content analysis for a disaster 
event. Lue et al. (2014) apply Krippendorff’s alpha to evaluate 
the quality of video-based damage assessment and obtain 
values greater than 0.6 for the majority of tasks. 

 Nevertheless, there are some groups for which the kappa 
value is low, although the average agreement of the individual 
tasks is high. This kind of paradox is well described by several 
authors, e.g. Feinstein & Cicchetti (1990); Sim & Wright 
(2005), and is influenced by the prevalence of the some classes 
within one group. Regarding the MapSwipe data, kappa values 
for groups where there are only few or no settlements (many 
“No” classifications) are strongly affected. Future research 
should therefore consider alternative statistical measures of 
agreement that offer solutions for this kind of problem. 

The lack of an external, reliable reference dataset against 
which to verify the crowdsourced information is the main 
limitation of this study. Although the intrinsic indicators 
employed (i.e. based on the agreement level among volunteers) 
has been shown to be a valid indicator for data quality (Porto 
de Albuquerque et al., 2016), it is still necessary to quantify the 
impact of the factors of disturbance. The results presented here 
should thus be seen as initial indicators of data quality, which 
still need to be further analyzed. For instance, future work 
should investigate the impact of individual users on the overall 

agreement and how to minimize their influence on the 
outcomes. 

Since this is only an initial study, further research is still 
needed to improve the existing crowdsourcing approaches and 
to understand their results better. Future steps in this direction 
should consider the integration of information generated 
through crowdsourcing and generated using automated 
approaches. This could also lead to a better understanding in 
which fields crowdsourced information can complement and 
support existing approaches. Expanding the applied 
crowdsourcing approach to a region where detailed reference 
data exists or using global data sets such as from WorldPop or 
Global Human Settlement Layer, and considering the 
requirements of the data users (e.g. MSF, Red Cross, HOT), 
would allow a more elaborated comparison of the different 
approaches.  
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