
1 From user-generated content to user-
supervised analysis 

This paper describes a pilot study that implements a novel 
approach for crowdsourcing the validation of clusters created 
from user-generated geographic content, or UGGC (Craglia et 
al., 2012). This validation is done by letting the crowd train a 
classifier. 

Although UGGC has proven its utility for a variety of tasks 
and purposes (Fast and Rinner, 2014; Granell and Ostermann, 
2016; Haworth, 2016), high semantic and syntactic 
heterogeneity, and unknown provenance and production 
parameters have a negative impact on its fitness-for-use. 

A common strategy has been to crowdsource curation tasks 
(Sui et al., 2012): Human volunteers check UGGC accuracy, 
assign labels, and prioritize further processing. Despite 
encouraging results, this approach lacks quality control and 
reproducibility (Camponovo and Freundschuh, 2014), 
guaranteed sustainability, and efficient scaling up (Morrow et 
al., 2011). 

Another approach is to employ data mining (DM) and 
machine learning (ML) techniques to select, filter, classify, 
and enrich UGGC. Here, at least three main challenges 
persist: Dependency on input data quality for unsupervised 
DM and ML (Kanevski et al., 2008), overfitting of the 
learning model (Butler, 2013), and training costs for different 
contexts and tasks (Spinsanti and Ostermann, 2013). 

By combining human and computational analysis of UGGC, 
we aim to address those challenges. Such a hybrid processing 
approach could improve UGGC’s fitness-for-use by 
exploiting contextual, local, or traditional knowledge from the 
human supervisors to ensure meaningful results, while using 
computation to reduce reliance on volunteers and to manage 

big data sets. The primary aim of this study is to test the 
overall feasibility of the approach. The secondary aim is to 
discover distinct urban places from meta-data of 
georeferenced photographs, contributing to the development 
of geospatial representations of our environment that account 
for different perspectives and the vagueness of human place 
conceptualization. To search for places, we look into the tags 
and descriptions of Flickr images, using a controlled 
vocabulary of terms for activities, qualities, and elements of 
places (Purves et al., 2011). We combine this semantic 
enrichment with clustering based on spatial proximity, and use 
a supervised classifier to remove noise from meaningful 
results. A web interface presents the results to human study 
participants for an interactive and iterative map-based 
validation and supervision.  

 
2 Pilot Study on Geotagged Photos 

2.1 Study Subject and Area 
Shared image content on platforms such as Flickr, Panoramio, 
and Instagram has received a substantial amount of research 
interest, because photographs often possess a strong semantic 
link between image and descriptive text, and geographic 
location (Sigurbjörnsson and Van Zwol, 2008). Flickr 
provides a mature and accessible API. It allows users to tag 
and describe images, and offers rich EXIF1 metadata. Most 
studies use a pre-defined, coarse geospatial granularity, or do 
not validate all of the results, which our approach intends to 
address.  

                                                                 
1 EXIF (Exchangeable Image File Format) is a standard 

used by digital cameras to record technical information of the 
camera’s status when shooting a photograph. 
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Abstract 

This paper describes a pilot study that implements a novel approach to validate data mining tasks by using the crowd to train a classifier. 
This hybrid approach to processing successfully addresses challenges faced during human curation or machine processing of user-generated 
geographic content (UGGC), namely quality control, reproducibility, sustainability, scaling, data quality, overfitting, and training costs. We 
test the approach on mining UGGC to derive information on local places as humans perceive them. Specifically, we retrieve Flickr image 
metadata, enrich it semantically by building term vectors using a controlled vocabulary, cluster it spatially, let online participants rate those 
clusters, classify them into noise and places by using both semantic and cluster characteristics, let online participants supervise the 
classification by annotating the results, and use their feedback to improve clustering and revise the trained model. The results show that the 
approach is feasible and suggest future studies to improve it, while also indicating that mining places from UGGC requires more than a 
single source.   
Keywords: crowdsourcing, user-generated geographic content, places, data mining, supervised machine learning, hybrid geoprocessing. 
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As a study area, we chose seven London City wards 
(Queensbridge, Dalston, Hackney Downs, Leabridge, 
Victoria, Hackney Central, Chatham, shown in Figure 1), 
because of their rich and diverse urban fabric, the abundance 
of UGGC, the absence of major touristic hotspots, and their 
outer administrative boundaries forming a mostly convex hull 
to reduce edge effects.  

 
Figure 1 Study area of seven City Wards within London 

 
 

2.2 System Architecture and Set-up 
The pilot study work flow consists of eight main phases, 
which Figure 2 shows in an overview, and which are 
explained in more detail below 

Phase 1 collects metadata of georeferenced Flickr images 
from the study area using the public API, and stores the 
retrieved information in a PostGIS database.  

Phase 2 finds place-related terms and builds term vectors, 
by using a controlled vocabulary that consists of 107 activities 
(e.g. “party”, “football”, “exhibition”), 313 elements (e.g. 
“church”, “station”, “graffiti”), and qualities (e.g. “dark”, 
“royal”, “woods”). For every image, its tags, title and 
descriptions were parsed to find vocabulary terms through 
lexical matching, and a term vector was constructed.  

Phase 3 searches for spatial clusters. Images that contain 
vocabulary terms are input for the clustering, using the 
DBSCAN algorithm from the Python Scikit-learn framework. 
DBSCAN can deal well with varying density of points as well 
as irregular shapes of clusters, and Scikit-learn could be 
reliably integrated into our workflow. Further, it is 
computationally inexpensive and fast, and has been used 
successfully in many studies. The clustering was spatial, using 
longitude and latitude as only features. 

Phase 4 computes thematic and spatial cluster 
characteristics. For each cluster, we calculated several 
thematic and spatial characteristics to be used as input features 

Figure 2 Pilot study prototype implementation and workflow 
 

 



AGILE 2017 – Wageningen, May 09-12, 2017        
 

for the ML classifier: First, the average and median cosine 
similarity. Cosine similarity is a common metric for 
comparing the semantic similarity between two term vectors, 
and equals the cosine of the angle between the two term 
vectors. To measure the internal similarity of a cluster, we 
calculated its average and median (to mitigate the effect of a 
single outlier image within an otherwise homogeneous 
cluster) cosine similarity from all its image pairs. Second, the 
number of images and unique contributors might indicate 
which image clusters define a distinct geographic place. 
Additionally, we computed the average and median silhouette 
(Rousseeuw, 1987) scores of all items for each cluster. The 
silhouette coefficient measures how similar an object is 
compared to the other objects in its cluster. It ranges from -1 
to +1, with high values indicating a poor match with other 
clusters and a good match with objects in its own cluster.  

Phase 5 crowdsources the validation and annotation of 
clusters. For the first workflow iteration, we considered all 
found clusters to be potential places. The web interface 
presents these clusters one at a time to a human supervisor. 
The screenshot in Figure 3 shows the initial instructions 
presented to a human supervisor. The interface then presents 
the first cluster, with the location of the images shown on a 
map (using OpenStreetMap as a base map) on the left side of 
the interface, and the actual images shown in a gallery on the 
right side (see Figure 4). It is possible to select images on the 
map and gallery. Once a supervisor clicks on the “Provide 
feedback” button, s/he can comment on the spatial layout and 
thematic consistency of the cluster (see Figure 5). If any 
question is answered “No”, additional feedback options 
appear. For question 1, those are “Wrong shape” and “Too 
large”. The option “Too small” was discarded after initial 
tests, since even if all images from exactly the same location, 
their content can cover much more geographic area. For 
question 2, the additional options are “There is more than one 
place shown” and “There are too many images that are not 
about a place at all!”  

 
Figure 3 Initial instructions to human supervisors 

 

Figure 4 Interface showing typical cluster to be labelled 

 
 
 

Figure 5 Supervisor feedback for a cluster 

 
 
Phase 6 assesses supervision results and removes noise. If 

the investigator(s) consider the results satisfactory and 
complete, non-place clusters can be removed as noise and the 
remaining stored in a UGGC place database. If not, the 
supervisor feedback leads to adjusting the clustering 
parameters. For the pilot study, we did not define a stable and 
satisfactory result. Instead, the first iteration used parameters 
that lead to geographically big clusters, and the second 
iteration parameters resulted in smaller (more compact) 
clusters. The aim was to account for the unknown and varying 
scale of places, and to test the supervisors’ feedback.  

Phase 7 (Re-)trains a classifier to detect places from noise. 
The characteristics derived in phase 4 form the feature space 
for the ML algorithm to classify the clusters into “place” or 
“non-place”. For starters, we choose a simple J48 decision 
tree learner implemented in Weka2, which has performed well 
on previous occasions (Spinsanti and Ostermann, 2013).  

Phase 8 filter clusters using the classifier. If there is no or 
insufficient human supervision available, the system could fall 
back on a previously trained classifier to filter noise from the 
clusters without human supervision.  

 
2.3 Results 
Initially, we used as search query a bounding box that 
included the entire Greater London Area and resulted in 
metadata on 5,182,330 geo-referenced photos uploaded until 
December 2014. After building term vectors and filtering for 
the study area, 16632 items remained. 

                                                                 
2 http://www.cs.waikato.ac.nz/ml/weka/ 
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The initial run used DBSCAN parameters of eps=0.0005 
and a minimum number of 10 images per cluster. The 
resulting 77 clusters were then shown to the human 
supervisors (n=5, with some annotators skipping certain 
clusters where they felt not confident enough to provide 
feedback) using the web interface described in the previous 
section. As expected, there was some disagreement between 
the supervisors. The small number of supervisors allowed a 
simple majority vote (i.e. the most common answer is 
assigned to that cluster, with the cluster being dropped from 
further analysis in case of ties). The results of the first round 
of annotations are shown in Table 1. These results indicate 
that 55% of the clusters contain one or more possible places 
(categories A and C), and 45% contain mostly noise (category 
B). 

 
Table 1 Frequency of annotator responses to first clustering 

(n = 77 clusters, majority vote in case of inter-rater 
disagreement, m = 5 annotators; x = 15 excluded if no 
majority vote available; Q = question) 

Shape spatial 
cluster (Q1) 

Fre-
quency 

Places (Q2) Fre-
quency 

0 (correct) 42 A (one ) 22 

1 (wrong shape) 14 B (none) 28 

2 (too big) 6 C (several) 12 

 
To remove that noise, the supervisor labels were used to 

train a J48 classifier, using a 10-fold stratified cross-validation 
to estimate performance. Excluding ambiguous clusters (those 
without majority rater agreement), and using all features 
described under phase 4, the resulting classifier performance 
is estimated to correctly classify 71% of all instances. The 
average recall is 79% if we consider only Type II errors (false 
negatives) as clusters that contain one or more places but were 
classified as noise. Table 2 shows the full confusion matrix 

 
Table 2 Combined confusion matrix of initial cluster 

classification 

Majority Label Classified as 

A B C 

One place (A) 17 3 2 

Too much noise (B) 6 21 1 

More than one place (C) 2 4 6 

 
The supervision results indicated that some clusters consist 

of more than one place and cover too much area. Therefore, a 
second iteration used modified clustering parameters to allow 
for smaller clusters (eps = 0.0003, min = 5), resulting in 210 
clusters (Figure 6 and Table 3). 

The ratio of signal-to-noise remains similar: 52% of the 
clusters contain one or more places, and 48% contain mostly 

noise. Applying the original classifier to predict the second set 
results in an overall decrease of performance: only 49% are 
correctly classified, with a recall of only 45%, indicating a 
large number of false negatives (see also Table 4). Some 
performance degradation is to be expected, given that the 
original training data set was created with different clustering 
parameters. 

 
Figure 6 Distribution of images in study area, colored 

according to cluster attribution 

 
 
 
Table 3 Frequency of annotator responses to second 

clustering (n=210 clusters) 

Shape spatial 
cluster (Q 1) 

Fre-
quency 

Places (Q 2) Fre-
quency 

0 (correct) 189 A (one) 91 

1 (wrong shape) 11 B (none) 101 

2 (too big) 10 C (several) 18 

 
Table 4 Combined confusion matrix of second iteration 

using first classifier 

Majority Label Classified as 

A B C 

One place (A) 38 45 8 

Too much noise (B) 28 63 10 

More than one place (C) 1 15 2 
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However, training a new J48 model using the second dataset 
results in mixed performance: The performance estimation of 
stratified 10-fold CV is only 49.5% correctly classified 
instances, however with an improved recall (again categories 
A and C combined) of 66% (see Table 5). 

 
Table 5 Combined confusion matrix of second iteration 

using second classifier 

Majority Label Classified as 

A B C 

One place (A) 58 29 4 

Too much noise (B) 53 44 4 

More than one place (C) 8 8 2 

 
3 Discussion  

An initial, purely unsupervised DM approach to detect places 
produced too many clusters, emphasizing the need for 
reduction to meaningful places through ML classification. The 
numerous instances to label, and the iterative character of the 
search for good hyper-parameters support our approach of 
crowdsourced validation and supervision. Despite the pilot 
study’s limited scope, the approach should scale well: The 
computational costs were low, with clustering taking less than 
a minute of run-time on a common-off-the-shelf business 
laptop. All employed software is free and open source, and 
mature enough that a user with a moderate IT-skills can set up 
the prototype within few hours. Plugging-in different data 
sources or using other algorithms only requires few manual 
adjustments. This makes the approach suitable for citizen 
science projects not having a strong or dedicated computer or 
data science expertise. The web interface proved easy to 
navigate and work with. Supervisor labelling required less 
than a minute per cluster. However, temporal and resource 
constraints led to choosing a systems-centered design 
perspective, and annotator feedback indicated that the 
questions could be formulated clearer. We consider these 
limitations acceptable for an initial pilot study.  

While the pilot study fulfilled its primary aim of 
demonstrating a feasible approach to hybrid geoinformation 
processing, its secondary aim of searching for meaningful 
places suffered from the clustering and classification 
performance, especially at a finer granularity. Although initial 
clustering was good enough to result in high inter-rater 
agreement, the number of false negatives (misclassified as 
non-place related) is too high. Further, a considerable share of 
images had either no assigned cluster or was part of large 
mega-clusters. Taking the temporal dimension into account 
(Birant and Kut, 2007) might help to detect ephemeral events 
and distinguish them from persistent features. Finding places 
through UGGC is a complex task, and many images have only 
very few and quite generic terms in their textual descriptions. 
We expect that more features for the classification and 
ancillary data from other UGGC sources or socio-
demographic data from authoritative sources will improve the 
results.  

4 Conclusions and outlook 

In this paper, we presented a pilot study to demonstrate the 
feasibility of a hybrid approach to geoinformation processing. 
Using exclusively open source software and algorithms, it 
collects UGGC from a photo-sharing platform (Flickr), adds 
term vectors for semantic enrichment, and clusters it using the 
DBSCAN algorithm. The resulting clusters are presented in a 
web-interface that allows asynchronous validation by multiple 
human supervisors. The responses are used to improve 
clustering parameters and train a classifier to remove false 
positives.  

The pilot study highlighted several issues that future 
research should address. (i) UGGC requires a system 
architecture that supports stream processing, e.g. flexible 
spatial and temporal bounding of the clustering (i.e. a single 
new UGGC should not trigger a re-clustering of the whole 
study area). (ii) The crowdsourced supervision needs a 
sustainable organization, so that more training sets can be 
labelled. An option is active learning, where the learning 
algorithm chooses which instances human annotators should 
label next, thereby maximizing the impact of human 
annotation and remaining flexible towards new instances. 
However, the type of learning might also depend on the 
expertise of the supervisors (Settles, 2009). Finally, recruiting 
annotators has to be a systematic and sustainable process, i.e. 
relying on research on establishing successful and lasting 
collaborative frameworks (Eveleigh et al., 2014). 
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