
1 Introduction 

Geosimulation models of human-environment interaction 
processes are in use for a wide range of application domains, 
including water demand management (e.g. Galán, López-
Paredes and del Olmo, 2009) and land use change (e.g. 
Verstegen et al., 2016). In most studies, the model is run for a 
range of scenarios, characterizing the system’s drivers for 
different future story lines. Each scenario results in a, slightly 
or very, different future system state. Such scenario 
projections can be combined with impact assessments to 
compare the values of the different story lines with respect to 
given indicators. 

Well-known examples of scenario projection impact 
assessment studies are the IPCC assessment reports (e.g. 
IPCC, 2014). In these reports, the IPPC shows the expected 
global-mean temperature increase (impact indicator) for 
different greenhouse gas (GHG) emission pathways 
(scenarios), using a climate model (geosimulation model).  

Yet, the typical results of such studies do not depict the full 
context (Figure 1). Namely, the scenarios describe a specific 
set of future story lines, resulting in a specific set of projected 
system state changes and related impacts. Thereby, scenario 
projection impact assessment studies give no information on 
how this specific set of impact indicator values relates to the 
complete set of potential impact indicator values for the case 
study area (Seppelt, Lautenbach and Volk, 2013). This 
imperfect information can lead to imperfect decisions. 

 

Figure 1: Hypothetical results of a scenario projection for two 
scenarios, A and B. The spatial configurations represent the 
system states projected for these scenarios by a geosimulation 
model. The black dots in the plot give the impact assessment 
results for two indicators, 1 and 2, aimed to be minimized. 
The grey area is the solution space, fading out in all 
directions, as the boundaries are unknown. 

 
 
To illustrate this: when the impacts of two scenario 

projections are compared (Figure 1), one scenario (scenario A 
in Figure 1) results in a lower impact than the other one for 
one or more indicators. But this does not ascertain that this 
lower impact is the lowest attainable impact, i.e. the optimum. 
The distance between the low impact and the optimum, marks 
the theoretic improvement potential. Even if the improvement 
is not reachable given the available policy instruments, it does 
provide information on the relative performance of the 
scenario, thereby putting it in context.  
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Abstract 

Geosimulation models are used in various domains to make projections for a set of scenarios, characterizing different future story lines. 
An impact assessment is applied on the results hereof to compare scenario outcomes with respect to given indicators. The impact 
assessment, however, does not represent the complete solution space of indicator values, meaning that it is unclear how optimal the best-
performing scenario is. In this paper, we explain how the addition of an optimization approach to a scenario projection impact assessment 
can reduce solution-space uncertainty. This helps policy makers to place scenario results in context, by providing them with information 
about the relative performance and improvement potential in terms of impact indicator values. This idea is illustrated by a case study of land 
expansion for ethanol production in the state Goiás, Brazil, for 2030. Impact indicators production costs and greenhouse gas (GHG) 
emissions are first calculated for a Business as Usual scenario projection from a land use change model. Next, optimal values for these 
indicators are determined through optimization of the land use configuration. Projected production costs are 729 US$2014 / m3 ethanol, with 
GHG emissions of 40 kg CO2-eq / m3 ethanol. Locating the position of this point in solution space yields two findings. The scenario’s 
relative performance is particularly good in terms of emissions, given that the scenario assumes no added emission strategies. The 
improvement potential is 50 US$2014 / m3 ethanol, when keeping emissions fixed, or 250 kg CO2-eq / m3 ethanol, when keeping costs fixed. 
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In this paper, the total combined range of values impact 
indicators can have in a study, is called the solution space. In 
Figure 1, with two indicators, the solution space is a polygon, 
encompassing at least the two scenarios, but its shape and 
extent are unknown. This indistinctness of the set of potential 
futures, is defined as solution-space uncertainty. All solutions 
for which it is impossible to improve one indicator, without 
impairing another, can be expressed quantitatively by a 
Pareto-optimal set, or Pareto frontier (Baños et al., 2011). 
This Pareto frontier is one boundary of the solution space, the 
optima, where the optimality depends on the weighting of the 
indicators. It is the most relevant boundary of the solution 
space, as it shows the improvement potentials of the scenarios. 

The aim of this paper is to show how solution-space 
uncertainty in a scenario projection impact assessment can be 
reduced by finding the Pareto frontier through spatial 
optimization. Optimization is an approach in which an optimal 
system state is designed, given one or multiple impact 
indicator(s) and a range of boundary conditions (Baños et al., 
2011). No simulation model is involved in the optimization, 
meaning that no system dynamics are imposed upon the 
realization of the optimal system state.  

Although one group of researchers has pointed out that the 
combination of scenario projection and optimization can 
strengthen efficient decision making in the domain of 
sustainable land use (Seppelt, Lautenbach and Volk, 2013), 
there is, to our knowledge, no case study demonstrating this. 
Our paper presents such a case study. The key terms used in 
this introduction are summarized in Table 1.  

 
Table 1: Definitions of key terms used in this paper. 

Term Definition 
Geosimulation model A model simulating a system 

dominated by spatial processes 
over time 

Scenario projection  Projection of a system state 
using a geosimulation model 
for a specific future storyline 

Impact assessment Evaluation of the effect of a 
projected system state on (an) 

indicator(s) of interest  
Optimization Method to optimize the system 

state based on (an) indicator(s) 
of interest 

Pareto frontier All system states for which no 
indicator can be improved 
without impairing another 

Solution space The total combined range of 
values indicators can cover for 

all possible system states 
Solution-space uncertainty The (shape and extent of the) 

solution space is completely or 
partly unknown 

 
 

2 Methods 

2.1 Case study 
An important current policy making issue that relies much 

on scenario projections, is the profitability and environmental 

sustainability of biofuels (Tempels and Van den Belt, 2016). 
A key player in the biofuel market is Brazil. The bulk of 
biofuel produced there, is ethanol from sugar cane. Whereas 
in previous decades sugar cane expansion in Brazil was 
concentrated in São Paulo state, recently Goiás has been 
experiencing a fast growth of sugar cane area (Adami et al., 
2012). Because this growth is expected to continue in the near 
future, Goiás was chosen as a case study area. Goiás is 
situated in central Brazil (Figure 2). 

The production of ethanol from sugar cane has four phases: 
1) Acquisition and preparation of land for the sugar cane 
plantation; 2) Sugar cane cultivation and harvest; 3) Transport 
of the harvested cane to the mill, the ethanol production 
facility; and 4) Processing of the sugar cane into ethanol. 

 
 

2.2 Impact assessment 
As described above, the biofuel debate involves two main 
issues: profitability and environmental sustainability. We have 
selected one impact indicator for each issue: production costs 
and GHG emissions. All four phases mentioned above involve 
both a production cost and a GHG emission component. Total 
production costs, c (US$2014 / m3 ethanol), are therefore: 

 𝑐𝑐 = 𝑐𝑐𝑙𝑙 + 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑡𝑡 + 𝑐𝑐𝑝𝑝 (1)  

In equation 1, cl  are the land costs (e.g. land rent), cc are the 
cultivation costs (e.g. fertilizers and machinery), ct are the 
transport costs, and cp are the processing costs that include 
revenues from selling produced electricity to the grid. All are 
in the unit US$2014 / m3 ethanol. Correspondingly, total 
emissions e (tonne CO2-eq / m3 ethanol) are:  

 𝑒𝑒 = 𝑒𝑒𝑙𝑙 + 𝑒𝑒𝑐𝑐 + 𝑒𝑒𝑡𝑡 + 𝑒𝑒𝑝𝑝 (2)  

In equation 2, el are the land emissions (e.g. above ground 
carbon stock change), ec are the cultivation emissions (e.g. 
fertilizer emissions), et are the transport emissions, and ep are 
the processing emissions that include abatements from the 
produced electricity. All are in the unit tonne CO2-eq / m3 
ethanol. Note that we calculate costs and emissions at the 
‘factory gate’, meaning that the revenues from selling the 
ethanol and the avoided emissions from the replacement of 
fossil fuel by the ethanol are not included. The cost and 
emission component calculations are based on two papers by 
Jonker et al. (2016, 2015). 

 
 

2.3 Scenario projection 
We use an existing Business as Usual (BAU) scenario 
projection of land use change from Verstegen et al. (2016) for 
the 2030 configuration of sugar cane fields for ethanol. It is 
combined with results from Jonker et al. (2016) for the 
placement of the ethanol mills (Figure 2). We need the 
locations of the mills to compute the transportation costs and 
emissions, and the scale of the mills to compute the 
processing costs (variable through the economies of scale 
principle). With these, both impact indicator values, c and e, 
can be calculated for the BAU scenario.  
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Figure 2: Land use in Goiás, Brazil, in 2006 and the projected 
locations of sugar cane fields and mills for ethanol in 2030. 
The inset shows the location of Goiás within Brazil. 

 
Main sources: 2006 data: Globcover (Arino et al., 2008) and 
Canasat (Rudorff et al., 2010), 2030 data: Verstegen et al. 
(2016), and Jonker et al. (2016). 
 

 
2.4 Optimization 
To fairly compare the impact indicators of the scenario 
projection and optimization results, both should involve the 
same amount of ethanol (boundary condition). In the 
projection, 10.2 million m3 ethanol is produced (calculated 
from Jonker et al., 2016). So, the goal of our optimization is 
to allocate sugar cane fields and ethanol mills producing 10.2 
million m3 ethanol, in such a way that the combined value of 
the two impact indicators is minimal.  

The two impact indicators, production costs and GHG 
emissions, can be combined into a single objective via a 
carbon price:  

 𝑥𝑥 = 𝑐𝑐 + 𝑒𝑒 ∙ 𝑝𝑝 (3)  

In equation 3, x (US$2014  / m3 ethanol) are the aggregate 
costs (production costs plus GHG ‘costs’) that we aim to 
minimize and p (US$2014 / tonne CO2-eq) is the carbon price. 
The Pareto frontier between the production costs (c) and GHG 
emissions (e) of ethanol, i.e. one solution-space boundary, is 
found by minimizing the aggregate costs (x) for different 
carbon prices (p). The carbon price determines the weighting 
of the two indicators. Five different carbon prices are used: 0, 
10, 100, 200 and 400 US$2014 / tonne CO2-eq. In addition, we 
optimize once on emissions only, to get the minimum 
attainable emissions (minimum attainable costs are reached at 
a carbon price of 0 US$2014 / tonne CO2-eq). 

The optimization is performed with a genetic algorithm 
(GA), because this algorithm has proved to generate good 
results for optimization problems like ours (e.g. Stewart, 
Janssen and van Herwijnen, 2004). A GA mimics the process 
of natural selection in a population of solutions, called 

individuals (Baños et al., 2011). The genes of the individuals 
encode the spatial configuration of sugar cane fields and mills. 
Through mutation and cross-over, the population evolves 
towards better solutions, i.e. lower aggregate costs, x. The best 
performing individual of the final evolved population is the 
optimal solution for the appointed carbon price, p. We use a 
population of 1000 individuals. The GA settings, such as the 
mutation rate, are determined by performance tests. 

 
 

3 Results and discussion 

The impact assessment of the scenario projection yields 
production costs of 729 US$2014 / m3 ethanol and GHG 
emissions of 40 kg CO2-eq / m3 ethanol (Figure 3). Without 
the results of the optimization, it would be unclear if this 
should be considered high or low, or good or bad, because the 
boundaries of the solution-space are unknown. One can 
compare the values with values reported in literature, but both 
indicators are very dependent on the study area location and 
on the total amount of ethanol produced. It is unlikely, that a 
comparative study for Goiás for the production of 10.2 million 
m3 in 2030 can be found (except for the one we are using the 
results from). 

The optimization generates the Pareto frontier, one 
boundary of the solution space (Figure 3). It ranges between 
826 US$2014 / m3 ethanol with -399 kg CO2-eq / m3 ethanol in 
the upper left of Figure 3, and 656 US$2014 / m3 ethanol with 
810 kg CO2-eq / m3 ethanol in the lower right of Figure 3, in a 
concave shape. 

Knowing the lower-left boundary of the solution-space, 
leads to two findings. The first is the relative performance of 
the BAU scenario for both indicators. For example, the 
projected GHG emissions would be optimal for carbon prices 
between 100 and 200 US$2014 / tonne CO2-eq. Given the fact 
that currently no carbon pricing system is installed in Brazil, 
one would expect results close to a carbon price of 0 US$2014 / 
tonne CO2-eq. The relatively low emissions of the BAU 
scenario might be caused by other established conservation 
policies, such as national parks. Another reason is that some 
economic drivers automatically lead to relatively low 
emissions. An example is the preference for locations with 
high-yielding soils, often reducing not only costs but also 
emissions, e.g. because this requires less fertilizer per kg cane. 
Both dynamics were explicitly (a model rule) or implicitly 
(through calibration) captured in the geosimulation model 
structure, bringing about the observed projection results. 

The second finding is the improvement potential. In theory, 
production costs could be lowered by about 50 US$2014 / m3 
ethanol compared to the projected costs, while keeping the 
projected GHG emissions (Figure 3, vertical distance to 
Pareto frontier from the +). Along the same lines, while 
keeping the projected production costs, GHG emissions could 
be lowered by about 250 kg CO2-eq / m3 ethanol, thereby 
reaching negative emissions (Figure 3, horizontal distance to 
Pareto frontier from the +). It should be noted that there can 
be costs and emissions related to changing the land use system 
in such a way that these optima are reached, such as the 
provision of subsidies to farmers to make them locate sugar 
cane plantations where they otherwise would not. These are 
not included in the calculations. 
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These two findings can assist policy-makers to decide if the 
best scenario performs good enough to implement it. If not, 
the system state belonging to the point on the Pareto frontier 
desired to be reached can be compared with the system state 
of the scenario results (Figure 1) to help designing better 
policy options than the ones in the original scenario. This 
spatial comparison is beyond the scope of the paper. 

Our optimization only yields the minima, or minimal 
combinations, of the impact indicators. This means there is 
still solutions-space uncertainty left: the position of the upper-
right boundary in Figure 3 is unknown. In our analysis this 
boundary is irrelevant, because we are interested in the 
improvement potential in the impact indicators. One could 
determine the second boundary by running the optimization 
with a reversed goal: maximizing the aggregate costs, x. 
Results hereof might be relevant when one is interested in the 
question “How much worse could it be?”. But most will be 
interested in the boundary of optima, the Pareto frontier. 

 
 
4 Conclusion 

In this paper, it is shown how solution-space uncertainty in 
a scenario projection impact assessment can be reduced by 
finding the Pareto frontier through spatial optimization. The 
reduced solution-space uncertainty allows policy-makers: 
1. To see how a scenario performs in terms of impact 

indicators with respect to the optima (shown in this 
paper). 

2. To improve scenario design by assessing the differences 
in impact indicator values (shown in this paper) and 
system states (not shown in this paper) between a 
scenario and the optima.  

The approach is of particular use for studies in which the 
scenarios represent different policy options, management 
strategies or other conditions that can be influenced, such as in 
renewable energy planning (Baños et al., 2011), or in spatial 
planning in general (Seppelt, Lautenbach and Volk, 2013).  
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