
1 Introduction 

Geographic information is used to solve a diversity of problems 

in various application areas. Depending on the application, 

different spatial models are used to represent reality. They can 

include 2 or 3 spatial dimensions. For ages cartographers used 

2D maps to model the shape of the earth, and more recently 3D 

models are being used for the analysis, simulation, and 

visualisation of our environment.  

An important aspect concerning geographic information is 

the amount of detail that is captured in the model. Is a road 

represented as a line or as a polygon? Do we simplify certain 

features or are they not relevant for the application domain and 

not modelled at all? These considerations are commonly 

captured in discrete levels of detail (LOD); for each fixed scale 

a separate layer of geographic information is stored (Meijers, 

2011). However, some data is stored redundantly as objects 

might exist at multiple scale levels. In addition, consistency is 

difficult to maintain because changes on one scale level should 

propagate to the next. 

 

 

1.1 Vario-scale data 

Instead of storing separate layers for each discrete scale, a 

spatial model could also describe a continuous LOD. Such a 

model is described in van Oosterom and Meijers (2013) and 

van Oosterom et al. (2014), where scale is represented as a 3rd 

dimension. A 2D base map is generalised and the results are 

stored in a single 3D structure, called the Space Scale Cube 

(SSC). The objects in this model have an importance range. 

This range describes their suitability for a certain LOD (classic 

SSC). Alternatively, they can be represented as polyhedra that 

gradually fade or aggregate in the 3rd dimension (smooth SSC). 

See figure 1. 

 

 

Figure 1: The Space Scale Cube 
 

 
 

Source: Adapted from van Oosterom et al. (2014). 

 

 

1.2 Requesting a map over a network 

To disseminate geo-information a distributed system can be 

used. Huang et al. (2016) showed that vario-scale structures can 

be used in a server-client architecture and that it is possible to 

request maps at arbitrary scale. However, transferring data 

takes time, which affects the responsiveness of the system, and 

sometimes costs can be involved for every byte that is send over 

the network. It is apparent that redundant data transfers, that is 

sending the same data multiple times over the network, should 

be avoided as much as possible. 

In the scenario where separate geographic datasets are 

maintained for each discrete scale level these redundant data 
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transfers are unavoidable as some objects might exist at 

multiple scales. Requesting more detail leads to the retrieval of 

a completely new dataset for a selected geographic region. 

Having vario-scale data structure, the opportunity arises to 

reuse data that is already present on the client. When requesting 

a new map, it should be possible to reuse previously retrieved 

data, only request missing data, and make at the client side a 

complete map by combining the new response with previously 

cached responses. A communication method is needed that uses 

the client cache and that supports retrieval of partial vario-scale 

data from the server, while keeping the service scalable and 

responsive. 

This paper shows that a generic data-driven spatial access 

method can be used as a mechanism for (partial) retrieval of 

vario-scale data in a server-client architecture, as described in 

Rovers (2016). We show that the Hilbert R-tree, which is 

commonly used for organizing and retrieving data from a 

database, can be employed in a server-client setting and that it 

can help make web services more scalable. 

Section 2 gives a short theoretical background by introducing 

spatial access methods and the Hilbert R-tree. Section 3 

describes the methodology. Section 4 describes our proof of 

concept implementation and shows the results of a benchmark 

used to assess the new method. Finally, Section 5 concludes the 

paper. 

 

 

2 Spatial access methods 

To implement a vario-scale model, data should be structured in 

such a way that it can be physically embedded in computer 

memory, ultimately stored as bits. Storage structures, indexes 

and compression techniques are needed. The fundamental issue 

for storage is that computer memory addresses are only 1-

dimensional. This means that with the storage of spatial data 

some kind of mapping is needed. Gaede and Günther (1998) 

explain that there does not exist a mapping from n-dimensional 

to 1-dimensional space such that all objects that are close in 

reality are also stored close in 1-dimensional space. An 

ordering can only be imposed on a single dimension. Therefore, 

n-dimensional, and thus spatial data, require specialised 

structures in order to be used efficiently. 

Methods that support efficient storage and retrieval of spatial 

data are commonly referred to as spatial access methods. A 

spatial access method applies both to spatial indexing as well 

as clustering (van Oosterom, 1999). An index helps in 

efficiently finding the right locations of data without having to 

perform a full search. It is a supplementary structure and 

therefore requires storage space in memory. Clustering has the 

goal to group data that is likely to be requested together on the 

same or nearby computer memory (disk pages) to minimize 

access time. This is a bottleneck in database performance. The 

minimal unit of transfer is often a disk page and without 

clustering a lot of transfers between memory and secondary 

storage might be needed. 

 

 

2.1 Space Filling Curve 

Clustering can be based on the organization of the index, but 

also space filling curves can be used for this purpose. A Space 

Filling Curve (SFC) can be used to group higher dimensional 

objects close together in 1-dimensional memory by imposing a 

linear ordering on the objects. This makes it possible to use 

common 1-dimensional indexing structures, such as the B-tree 

(van Oosterom, 1999). 

Different SFC types exist. Figure 2 shows two common 

curves on a discrete 2D target domain. These are the Morton 

and the Hilbert curve. The SFC represents a path through a grid. 

The paths of SFCs are different and therefore some curves 

maintain better spatial proximity than others.  

 

 

Figure 2: Two space filling curves 
 

 
 

 

2.2 Bounding volume hierarchies 

Bounding volume hierarchies build a tree structure on a set of 

objects. Pointers to the objects are typically stored in the leaf 

nodes of the tree. Higher-level nodes group lower-level nodes 

together and store a bounding volume that encloses the entire 

sub-tree. Bounding volumes of nodes may overlap. The tree is 

searched top-down by testing for overlap between the query 

geometry and the bounding volumes. If there is no overlap with 

a higher-level node there can also be no overlap with any of its 

children. The rest of the branch does not need to be searched. 

The efficiency of the index depends on the algorithm that 

distributes the objects among the nodes. The common approach 

for creating these structures is by inserting the objects one by 

one in the tree (top-down). The objects are inserted in those 

nodes that need the least enlargement. The order of insertion 

has a large impact on the distribution. Well known examples 

are the R-tree (Guttman, 1984) and its variants: R+ tree (Sellis 

et al., 1987), R* tree (Beckmann et al., 1990). Figure 3 provides 

an example: a 2D R-tree. 

 

 

Figure 3: The R-tree 
 

 
 

 

2.3 Hilbert R-tree 

Another way to distribute the objects in a bounding volume 

hierarchy is by using a SFC. The Hilbert R-tree sorts objects, 

typically using the centroid, by their value on the Hilbert curve 

(Kamel and Faloutsos, 1994). Given this ordering, objects are 

grouped together into leaf nodes (Figure 4). The same goes for 
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nodes. They are recursively grouped into higher-level nodes 

until the root-node is reached. The advantage of the Hilbert R-

tree is that it is built bottom-up, giving a more compact tree. 

 

 

Figure 4: Two-dimensional schematic example of sorting and 

grouping objects according to their centroid using a SFC. 
 

 
 

 

3 Efficient partial data retrieval 

The goal of this research is to achieve efficient communication, 

without too many redundant data transfers, for vario-scale data 

in a server-client architecture. It aims in minimizing network 

usage by grouping objects together and marking them explicitly 

as cacheable. It also aims in achieving scalability, i.e. the ability 

to facilitate many concurrent users, by providing the client the 

possibility to determine delta-requests, so that we can use the 

processing power of the client and off-load work from the 

server. A data-driven spatial access method is used to let the 

client retrieve partial data, based on the following objectives: 

 

1. cluster data likely to be used together into packages on the 

server, based on scale and geographic extent, 
 

2. let the client retrieve packages using a spatial index 

structure, 
 

3. and use the client cache to re-use packages. 

 

 

3.1 Requirements 

To make communication suited for a server-client setting we 

place the following restrictions on the method: 

 

• Leaf nodes will refer to data packages: This is usually 

the approach followed for databases, where the size of 

each leaf corresponds to the size of a disk page. The 

structure is used to make a sub-selection and to retrieve 

the disk pages with candidate answers from secondary 

storage. Precise computation on the objects takes place in 

memory. In a server-client setting similar conditions 

apply. The most time is spent on retrieving the data. 

Besides the actual time to transfer data there are per-

interaction set-up costs for the TCP/IP stack and the 

headers in HTTP requests. Therefore, it is more efficient 

to transfer data in groups. Objects should be grouped in 

packages just as objects are clustered on a disk page. 
 

• Constant package size: Packages should approximately 

have the same size when measured in bytes. A maximum 

threshold should be specified. This restriction is needed 

because the number of coordinates and therefore the size 

of geometry is variable. Just grouping an equal number of 

objects together does not give packages of constant size 

and would result in different transfer and processing times 

on the client. The responsiveness of the client would be 

unpredictable. 
 

• Full nodes: Full nodes lead to a more compact index and 

is more efficient for transfer over a network. 
 

• Tree is balanced: A balanced tree minimizes the worst-

case search time of the index and makes the client more 

stable. 
 

• Axis aligned minimum bounding box: Rectangles can 

be compactly encoded and allow fast filtering 

computations. 

 

 

3.2 Clustering objects to create packages 

An important consideration is what size the packages should 

be. On the one hand, large packages are better for reducing 

overhead costs. On the other hand, this means that additional 

candidate answers are retrieved that will not match the query. 

If a client must retrieve packages with a large spatial extent in 

relation to its viewport a lot of data may be transferred that is 

not directly needed. However, if a client stores the additional 

data in cache it is likely that it can be used for sequential 

queries. 

To achieve efficient clustering the aim is to minimize the 

volume of and overlap between packages. They should be as 

compact as possible. This will increase the percentage of 

correct candidate answers that are retrieved over the network. 

Clustering can be done using different techniques. However, 

in our proof of concept implementation we created the 

packages using a Hilbert SFC. For each object the value on the 

curve is calculated using its centroid (of 3D box: 2D spatial 

extents and 1D importance range). This value is used to impose 

a linear ordering on the objects. Groups are made based on this 

ordering. 

 

 

3.3 Spatial index 

The Hilbert R-tree is used as a spatial index on the client. It is 

balanced and has full nodes. This makes the tree compact and 

efficient for searching. Furthermore, the tree is fast to build and 

easy to implement. Because a SFC is used to determine which 

nodes should be grouped together the method is generic and can 

be extended to higher dimensions. 

 

 

3.4 Communication between client and server 

As first step, the client retrieves the index and uses it to find the 

sub-selection of packages that contain candidate answers. The 

client retrieves the needed packages, either from cache or over 

the network, and processes them to find exactly matching 

objects. Figure 5 illustrates the communication steps. Initially, 

the client sends a single GET request for the index. 

Subsequently, it performs a series of actions for every new map 

it needs to construct. For every map query the client traverses 

the index using the bounding box of its viewport and its 

corresponding importance value (imp). The size of a viewport 

(in world coordinates) is an indication of the LOD that is 

needed, which can be translated to an importance value. All 

packages needed, as indicated by the index, are retrieved from 

the server, if they are not already in cache, and are filtered to 
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get only the objects for the correct LOD. Finally, the objects 

are rendered and the newly retrieved packages are cached. 

The packages and the index are identified as unique 

resources. They are placed on the file system, but can 

alternatively be stored in the database. A single GET request is 

made for every resource. This allows caching and the use of 

shared cache layers. Furthermore, it allows packages to be 

placed on different servers which makes it possible to add 

proxy servers or intermediary layers for load balancing. 

 

 

Figure 5: Sequence diagram for the communication 
 

 
 

 

4 Proof of concept and Results 

For the proof of concept a prototype client was developed that 

can communicate with the server using the new Package-based 

methodology. A classic SSC was generated from a topographic 

base map for the province of Drenthe in the Netherlands 

(Figure 6). The dataset has 1,110,123 edges and a total size of 

625 MB. The edges were grouped into packages with a size of 

500 KB. Details of the implementation are described in Rovers 

(2016). The code is available on github1. 

The new Package-based methodology for communication 

(referred to as option P) was assessed by comparing the 

                                                                 
1 https://github.com/a3rovers/thesis/ 

prototype to the Alternative of retrieving ready-made maps 

(option A). The alternative is stateless, i.e. each request is made 

independent of any previous responses. The client simply 

requests a completely new map from the server for every 

interaction (panning, zooming, etc.). Reusing data that is 

already present on the client is thus not possible (similar to 

traditional multi-scale representations). Huang et al. (2016) 

describe this communication mechanism for retrieving ready-

made maps. 

 

 

Figure 6: A generalised map of Drenthe derived from the SSC 
 

 
 

 

For the assessment we simulated different user scenarios 

(Rovers, 2016). The efficiency of communication varies. For 

some usage scenarios the amount of data transfers with a 

package-based communication was reduced, in other scenarios 

more data was needed. Figure 7 shows the sequence of queries 

for a typical scenario where using option P is beneficial. 

We measured the data transfers (Figure 8) and the time till 

last byte (TTLB, cf. Figure 9) for both options. The total bytes 

sent over the network for option A is 2.5 MB, for option P this 

is 1.3 MB. The new method is thus more efficient regarding 

data transfers. This is also the case for TTLB, even for some 

queries where more data is transferred. There are two reasons 

for this: a. the packages can be requested in parallel, while we 

must wait until the entire map is constructed on the server for 

option A, and b. the server is less complex for option P and only 

has to send the requested packages, while for option A the 

server has to find which data to send (by means of a database 

query). 

During interactive use the package-based methodology gets 

more efficient. With long sessions, where a user visits the same 

area multiple times, we can reduce the amount of data that is 

needed increasingly. If the user minimally pans the map, for 

option A completely new data is requested. For option P, it is 

likely that the map can be reconstructed using the packages that 

are already in cache (Figure 10). 
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Figure 7: Sequence of queries for the user scenario: zoom-in 

(1-14,17-19,21,31-33), pan (15,16,20,34), zoom-out (22-30). 
 

 
 

 

 

Figure 8: Data transfers. Note that with Option P data can be 

reused for subsequent requests. 
 

 
 

 

Figure 9: Response times 
 

 
 

Figure 10: Total packages needed to make a map. Colours 

indicate whether a package is requested from the server, or can 

be requested from the local cache. 
 

 
 

 

It should be clear that the performance of the method depends 

on the effectiveness of the algorithm that clusters the data into 

packages. If clustering is improved, also the efficiency of the 

new method is improved. 

 

 

5 Conclusion 

We presented a method for partial retrieval from a larger 

varioscale data set in a server-client setting based on a data-

driven spatial access method. The method supports efficient 

retrieval of partial data by a client and makes it possible to reuse 

the data by means of caching. It also allows for a relatively 

simple server implementation, thereby off-loading work from a 

server to a client. This can help in making web services more 

scalable. 

The Hilbert SFC was used for clustering and the Hilbert R-

tree was used as an index on the client. It should be investigated 

if clustering can be improved or if different spatial access 

methods can be used. If clustering is improved, also the 

efficiency of the method will improve. 

Also, clustering of the packages is dependent on the vario-

scale source data. It is assumed the data is effectively 

generalised. In our test data, the geographic features had similar 

extents. However, large geographic features could affect 

clustering. In this case, it should be investigated if it is needed 

to cut up the geometry so that they can be distributed among 

different packages. Alternatively, the extents of the features 

could be used as an additional dimension in the calculation of 

the Hilbert key. This makes it more likely that large features 

are grouped together in the same package. 

Furthermore, the method is generic for the way in which data 

is retrieved by a client. This gives support for the hypothesis 

that the method can also facilitate communication for the 

smooth SSC and other use cases with higher dimensional data, 

such as 4D point clouds (van Oosterom et al, 2015). It is 

expected that communication can be similar as with varioscale 

data, and that only the implementation of the filter and 

visualization steps need to be different.  
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