
1 Introduction

Geographic information is used to solve a diversity of problems

in various application areas. Depending on the application,

different spatial models are used to represent reality. They can

include 2 or 3 spatial dimensions. For ages cartographers used

2D maps to model the shape of the earth, and more recently 3D

models are being used for the analysis, simulation, and

visualisation of our environment.

An important aspect concerning geographic information is

the amount of detail that is captured in the model. Is a road

represented as a line or as a polygon? Do we simplify certain

features or are they not relevant for the application domain and

not modelled at all? These considerations are commonly

captured in discrete levels of detail (LOD); for each fixed scale

a separate layer of geographic information is stored (Meijers,

2011). However, some data is stored redundantly as objects

might exist at multiple scale levels. In addition, consistency is

difficult to maintain because changes on one scale level should

propagate to the next.

1.1 Vario-scale data

Instead of storing separate layers for each discrete scale, a

spatial model could also describe a continuous LOD. Such a

model is described in van Oosterom and Meijers (2013) and

van Oosterom et al. (2014), where scale is represented as a 3rd

dimension. A 2D base map is generalised and the results are

stored in a single 3D structure, called the Space Scale Cube

(SSC). The objects in this model have an importance range.

This range describes their suitability for a certain LOD (classic

SSC). Alternatively, they can be represented as polyhedra that

gradually fade or aggregate in the 3rd dimension (smooth SSC).

See figure 1.

Figure 1: The Space Scale Cube

Source: Adapted from van Oosterom et al. (2014).

1.2 Requesting a map over a network

To disseminate geo-information a distributed system can be

used. Huang et al. (2016) showed that vario-scale structures can

be used in a server-client architecture and that it is possible to

request maps at arbitrary scale. However, transferring data

takes time, which affects the responsiveness of the system, and

sometimes costs can be involved for every byte that is send over

the network. It is apparent that redundant data transfers, that is

sending the same data multiple times over the network, should

be avoided as much as possible.

In the scenario where separate geographic datasets are

maintained for each discrete scale level these redundant data

Using a generic spatial access method for caching and efficient retrieval

of vario-scale data in a server-client architecture

Adrie Rovers

Delft University of Technology

Julianalaan 134

Delft, The Netherlands

a3rovers@gmail.com

Martijn Meijers

Delft University of Technology

Julianalaan 134

Delft, The Netherlands

b.m.meijers@tudelft.nl

Peter van Oosterom

Delft University of Technology

Julianalaan 134

Delft, The Netherlands

p.j.m.vanoosterom@tudelft.nl

Abstract

This paper presents a methodology for using a generic data-driven spatial access method as a communication mechanism for vario-scale

data in a server-client setting. As a complete data set is often quite large, it is managed at the server side and supporting different scale levels
is important. We show that a generic R-tree like grouping method, commonly used for efficiently organizing and retrieving data from a

database, can be used in a networked architecture and that it allows off-loading processing tasks from a server to a client. This helps in making

web services more scalable. The method supports efficient retrieval of partial data by a client and makes it possible to reuse data by means of
caching. This can make communication more efficient.

Keywords: vario-scale data, vario-scale maps, spatial access methods, server-client architecture, caching

AGILE 2017 – Wageningen, May 9-12, 2017

transfers are unavoidable as some objects might exist at

multiple scales. Requesting more detail leads to the retrieval of

a completely new dataset for a selected geographic region.

Having vario-scale data structure, the opportunity arises to

reuse data that is already present on the client. When requesting

a new map, it should be possible to reuse previously retrieved

data, only request missing data, and make at the client side a

complete map by combining the new response with previously

cached responses. A communication method is needed that uses

the client cache and that supports retrieval of partial vario-scale

data from the server, while keeping the service scalable and

responsive.

This paper shows that a generic data-driven spatial access

method can be used as a mechanism for (partial) retrieval of

vario-scale data in a server-client architecture, as described in

Rovers (2016). We show that the Hilbert R-tree, which is

commonly used for organizing and retrieving data from a

database, can be employed in a server-client setting and that it

can help make web services more scalable.

Section 2 gives a short theoretical background by introducing

spatial access methods and the Hilbert R-tree. Section 3

describes the methodology. Section 4 describes our proof of

concept implementation and shows the results of a benchmark

used to assess the new method. Finally, Section 5 concludes the

paper.

2 Spatial access methods

To implement a vario-scale model, data should be structured in

such a way that it can be physically embedded in computer

memory, ultimately stored as bits. Storage structures, indexes

and compression techniques are needed. The fundamental issue

for storage is that computer memory addresses are only 1-

dimensional. This means that with the storage of spatial data

some kind of mapping is needed. Gaede and Günther (1998)

explain that there does not exist a mapping from n-dimensional

to 1-dimensional space such that all objects that are close in

reality are also stored close in 1-dimensional space. An

ordering can only be imposed on a single dimension. Therefore,

n-dimensional, and thus spatial data, require specialised

structures in order to be used efficiently.

Methods that support efficient storage and retrieval of spatial

data are commonly referred to as spatial access methods. A

spatial access method applies both to spatial indexing as well

as clustering (van Oosterom, 1999). An index helps in

efficiently finding the right locations of data without having to

perform a full search. It is a supplementary structure and

therefore requires storage space in memory. Clustering has the

goal to group data that is likely to be requested together on the

same or nearby computer memory (disk pages) to minimize

access time. This is a bottleneck in database performance. The

minimal unit of transfer is often a disk page and without

clustering a lot of transfers between memory and secondary

storage might be needed.

2.1 Space Filling Curve

Clustering can be based on the organization of the index, but

also space filling curves can be used for this purpose. A Space

Filling Curve (SFC) can be used to group higher dimensional

objects close together in 1-dimensional memory by imposing a

linear ordering on the objects. This makes it possible to use

common 1-dimensional indexing structures, such as the B-tree

(van Oosterom, 1999).

Different SFC types exist. Figure 2 shows two common

curves on a discrete 2D target domain. These are the Morton

and the Hilbert curve. The SFC represents a path through a grid.

The paths of SFCs are different and therefore some curves

maintain better spatial proximity than others.

Figure 2: Two space filling curves

2.2 Bounding volume hierarchies

Bounding volume hierarchies build a tree structure on a set of

objects. Pointers to the objects are typically stored in the leaf

nodes of the tree. Higher-level nodes group lower-level nodes

together and store a bounding volume that encloses the entire

sub-tree. Bounding volumes of nodes may overlap. The tree is

searched top-down by testing for overlap between the query

geometry and the bounding volumes. If there is no overlap with

a higher-level node there can also be no overlap with any of its

children. The rest of the branch does not need to be searched.

The efficiency of the index depends on the algorithm that

distributes the objects among the nodes. The common approach

for creating these structures is by inserting the objects one by

one in the tree (top-down). The objects are inserted in those

nodes that need the least enlargement. The order of insertion

has a large impact on the distribution. Well known examples

are the R-tree (Guttman, 1984) and its variants: R+ tree (Sellis

et al., 1987), R* tree (Beckmann et al., 1990). Figure 3 provides

an example: a 2D R-tree.

Figure 3: The R-tree

2.3 Hilbert R-tree

Another way to distribute the objects in a bounding volume

hierarchy is by using a SFC. The Hilbert R-tree sorts objects,

typically using the centroid, by their value on the Hilbert curve

(Kamel and Faloutsos, 1994). Given this ordering, objects are

grouped together into leaf nodes (Figure 4). The same goes for

AGILE 2017 – Wageningen, May 9-12, 2017

nodes. They are recursively grouped into higher-level nodes

until the root-node is reached. The advantage of the Hilbert R-

tree is that it is built bottom-up, giving a more compact tree.

Figure 4: Two-dimensional schematic example of sorting and

grouping objects according to their centroid using a SFC.

3 Efficient partial data retrieval

The goal of this research is to achieve efficient communication,

without too many redundant data transfers, for vario-scale data

in a server-client architecture. It aims in minimizing network

usage by grouping objects together and marking them explicitly

as cacheable. It also aims in achieving scalability, i.e. the ability

to facilitate many concurrent users, by providing the client the

possibility to determine delta-requests, so that we can use the

processing power of the client and off-load work from the

server. A data-driven spatial access method is used to let the

client retrieve partial data, based on the following objectives:

1. cluster data likely to be used together into packages on the

server, based on scale and geographic extent,

2. let the client retrieve packages using a spatial index

structure,

3. and use the client cache to re-use packages.

3.1 Requirements

To make communication suited for a server-client setting we

place the following restrictions on the method:

• Leaf nodes will refer to data packages: This is usually

the approach followed for databases, where the size of

each leaf corresponds to the size of a disk page. The

structure is used to make a sub-selection and to retrieve

the disk pages with candidate answers from secondary

storage. Precise computation on the objects takes place in

memory. In a server-client setting similar conditions

apply. The most time is spent on retrieving the data.

Besides the actual time to transfer data there are per-

interaction set-up costs for the TCP/IP stack and the

headers in HTTP requests. Therefore, it is more efficient

to transfer data in groups. Objects should be grouped in

packages just as objects are clustered on a disk page.

• Constant package size: Packages should approximately

have the same size when measured in bytes. A maximum

threshold should be specified. This restriction is needed

because the number of coordinates and therefore the size

of geometry is variable. Just grouping an equal number of

objects together does not give packages of constant size

and would result in different transfer and processing times

on the client. The responsiveness of the client would be

unpredictable.

• Full nodes: Full nodes lead to a more compact index and

is more efficient for transfer over a network.

• Tree is balanced: A balanced tree minimizes the worst-

case search time of the index and makes the client more

stable.

• Axis aligned minimum bounding box: Rectangles can

be compactly encoded and allow fast filtering

computations.

3.2 Clustering objects to create packages

An important consideration is what size the packages should

be. On the one hand, large packages are better for reducing

overhead costs. On the other hand, this means that additional

candidate answers are retrieved that will not match the query.

If a client must retrieve packages with a large spatial extent in

relation to its viewport a lot of data may be transferred that is

not directly needed. However, if a client stores the additional

data in cache it is likely that it can be used for sequential

queries.

To achieve efficient clustering the aim is to minimize the

volume of and overlap between packages. They should be as

compact as possible. This will increase the percentage of

correct candidate answers that are retrieved over the network.

Clustering can be done using different techniques. However,

in our proof of concept implementation we created the

packages using a Hilbert SFC. For each object the value on the

curve is calculated using its centroid (of 3D box: 2D spatial

extents and 1D importance range). This value is used to impose

a linear ordering on the objects. Groups are made based on this

ordering.

3.3 Spatial index

The Hilbert R-tree is used as a spatial index on the client. It is

balanced and has full nodes. This makes the tree compact and

efficient for searching. Furthermore, the tree is fast to build and

easy to implement. Because a SFC is used to determine which

nodes should be grouped together the method is generic and can

be extended to higher dimensions.

3.4 Communication between client and server

As first step, the client retrieves the index and uses it to find the

sub-selection of packages that contain candidate answers. The

client retrieves the needed packages, either from cache or over

the network, and processes them to find exactly matching

objects. Figure 5 illustrates the communication steps. Initially,

the client sends a single GET request for the index.

Subsequently, it performs a series of actions for every new map

it needs to construct. For every map query the client traverses

the index using the bounding box of its viewport and its

corresponding importance value (imp). The size of a viewport

(in world coordinates) is an indication of the LOD that is

needed, which can be translated to an importance value. All

packages needed, as indicated by the index, are retrieved from

the server, if they are not already in cache, and are filtered to

AGILE 2017 – Wageningen, May 9-12, 2017

get only the objects for the correct LOD. Finally, the objects

are rendered and the newly retrieved packages are cached.

The packages and the index are identified as unique

resources. They are placed on the file system, but can

alternatively be stored in the database. A single GET request is

made for every resource. This allows caching and the use of

shared cache layers. Furthermore, it allows packages to be

placed on different servers which makes it possible to add

proxy servers or intermediary layers for load balancing.

Figure 5: Sequence diagram for the communication

4 Proof of concept and Results

For the proof of concept a prototype client was developed that

can communicate with the server using the new Package-based

methodology. A classic SSC was generated from a topographic

base map for the province of Drenthe in the Netherlands

(Figure 6). The dataset has 1,110,123 edges and a total size of

625 MB. The edges were grouped into packages with a size of

500 KB. Details of the implementation are described in Rovers

(2016). The code is available on github1.

The new Package-based methodology for communication

(referred to as option P) was assessed by comparing the

1 https://github.com/a3rovers/thesis/

prototype to the Alternative of retrieving ready-made maps

(option A). The alternative is stateless, i.e. each request is made

independent of any previous responses. The client simply

requests a completely new map from the server for every

interaction (panning, zooming, etc.). Reusing data that is

already present on the client is thus not possible (similar to

traditional multi-scale representations). Huang et al. (2016)

describe this communication mechanism for retrieving ready-

made maps.

Figure 6: A generalised map of Drenthe derived from the SSC

For the assessment we simulated different user scenarios

(Rovers, 2016). The efficiency of communication varies. For

some usage scenarios the amount of data transfers with a

package-based communication was reduced, in other scenarios

more data was needed. Figure 7 shows the sequence of queries

for a typical scenario where using option P is beneficial.

We measured the data transfers (Figure 8) and the time till

last byte (TTLB, cf. Figure 9) for both options. The total bytes

sent over the network for option A is 2.5 MB, for option P this

is 1.3 MB. The new method is thus more efficient regarding

data transfers. This is also the case for TTLB, even for some

queries where more data is transferred. There are two reasons

for this: a. the packages can be requested in parallel, while we

must wait until the entire map is constructed on the server for

option A, and b. the server is less complex for option P and only

has to send the requested packages, while for option A the

server has to find which data to send (by means of a database

query).

During interactive use the package-based methodology gets

more efficient. With long sessions, where a user visits the same

area multiple times, we can reduce the amount of data that is

needed increasingly. If the user minimally pans the map, for

option A completely new data is requested. For option P, it is

likely that the map can be reconstructed using the packages that

are already in cache (Figure 10).

AGILE 2017 – Wageningen, May 9-12, 2017

Figure 7: Sequence of queries for the user scenario: zoom-in

(1-14,17-19,21,31-33), pan (15,16,20,34), zoom-out (22-30).

Figure 8: Data transfers. Note that with Option P data can be

reused for subsequent requests.

Figure 9: Response times

Figure 10: Total packages needed to make a map. Colours

indicate whether a package is requested from the server, or can

be requested from the local cache.

It should be clear that the performance of the method depends

on the effectiveness of the algorithm that clusters the data into

packages. If clustering is improved, also the efficiency of the

new method is improved.

5 Conclusion

We presented a method for partial retrieval from a larger

varioscale data set in a server-client setting based on a data-

driven spatial access method. The method supports efficient

retrieval of partial data by a client and makes it possible to reuse

the data by means of caching. It also allows for a relatively

simple server implementation, thereby off-loading work from a

server to a client. This can help in making web services more

scalable.

The Hilbert SFC was used for clustering and the Hilbert R-

tree was used as an index on the client. It should be investigated

if clustering can be improved or if different spatial access

methods can be used. If clustering is improved, also the

efficiency of the method will improve.

Also, clustering of the packages is dependent on the vario-

scale source data. It is assumed the data is effectively

generalised. In our test data, the geographic features had similar

extents. However, large geographic features could affect

clustering. In this case, it should be investigated if it is needed

to cut up the geometry so that they can be distributed among

different packages. Alternatively, the extents of the features

could be used as an additional dimension in the calculation of

the Hilbert key. This makes it more likely that large features

are grouped together in the same package.

Furthermore, the method is generic for the way in which data

is retrieved by a client. This gives support for the hypothesis

that the method can also facilitate communication for the

smooth SSC and other use cases with higher dimensional data,

such as 4D point clouds (van Oosterom et al, 2015). It is

expected that communication can be similar as with varioscale

data, and that only the implementation of the filter and

visualization steps need to be different.

References

Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B.

(1990) The R*-tree: An efficient and robust access method for

points and rectangles. In Proceedings of the 1990 ACM

AGILE 2017 – Wageningen, May 9-12, 2017

SIGMOD international conference on Management of data -

SIGMOD 90. Association for Computing Machinery (ACM).

Gaede, V. and Günther, O. (1998). Multidimensional access

methods. CSUR, 30(2):170-231.

Guttman, A. (1984). R-trees. In Proceedings of the 1984 ACM

SIGMOD international conference on Management of data -

SIGMOD 84. Association for Computing Machinery (ACM).

Huang, L., Meijers, M., Šuba, R., and van Oosterom, P. (2016).

Engineering web maps with gradual content zoom based on

streaming vector data. ISPRS Journal of Photogrammetry and

Remote Sensing, 114:274-293.

Kamel, I. and Faloutsos, C. (1994). Hilbert R-tree: An

improved R-tree using fractals. In Proceedings of the 20th

International Conference on Very Large Data Bases, VLDB

’94, pages 500-509, San Francisco, CA, USA. Morgan

Kaufmann Publishers Inc.

Meijers, M. (2011). Variable-scale Geo-information. PhD

thesis, Delft University of Technology.

Rovers, A. (2016). Exploring the use of a generic spatial access

method for caching and efficient retrieval of vario-scale data in

a client-server architecture. Master’s thesis, Delft University of

Technology.

Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987). The R+-

tree: A dynamic index for multi-dimensional objects. In

Proceedings of the 13th International Conference on Very

Large Data Bases, pages 507-518.

van Oosterom, P. (1999). Spatial access methods. In

Goodchild, M. F., Longley, P. A., Maguire, D. J., and Rhind,

D. W., editors, Geographical Information Systems Principles,

Technical Issues, Management Issues, and Applications,

volume 1. John Wiley & Sons.

van Oosterom, P., Martinez-Rubi, O., Ivanova, M.,

Horhammer, M., Geringer, D., Ravada, S., Tijssen, T., Kodde,

M., and Gonçalves, R. (2015). Massive point cloud data

management: Design, implementation and execution of a point

cloud benchmark. Computers & Graphics, 49:92-125.

van Oosterom, P. and Meijers, M. (2013). Vario-scale data

structures supporting smooth zoom and progressive transfer of

2d and 3d data. International Journal of Geographical

Information Science, 28(3):455-478.

van Oosterom, P., Meijers, M., Stoter, J., and Šuba, R. (2014).

Data structures for continuous generalisation: tGAP and SSC.

In Lecture Notes in Geoinformation and Cartography, pages

83–117. Springer Science Business Media.

