
1 Computing Routes 

Most car navigation systems compute the shortest path, the 

fastest path or the most economic one and calculate with the 

attributes of the underlying graph. Some of the attributes 

allow path calculations, which avoid toll roads or highways 

based on the personal preferences of the driver. Additionally, 

"real-time" information about traffic jams, for example, can 

be taken in account in the route calculation to provide the user 

with some alternatives. The automatic positioning function 

(e.g. GPS) allows the navigation system to locate the user 

constantly and to compare the driving behaviour with the 

proposed route. 

However, there are a few more navigation strategies, which 

comply with a purpose. In case of human navigation, 

explaining the best route to a tourist requires the simplest 

route with a minimal set of instructions. This Simplest Path 

concept proposed by Duckham and Kulik (2003) reduces the 

amount of information by negotiation of intersections, where 

users go straight. For navigating through an unknown 

environment towards a visible target (landmark), the Least 

Angle Strategy of Hochmair (2000) may be the best choice. 

At an intersection, the agent takes the road with the least 

deviation from the direct target direction. In case of bicycle 

navigation, the scenery is a desirable route criteria but not 

essential and hard to find. Hochmair and Navratil (2008) show 

a method of finding scenic routes using standard shortest path 

computation and the reducing of costs of edges by traversing 

buffers around attractive places. Since the user is interested in 

a compromise of a nice scenery and the common route 

selection criteria shortest, fastest and simplest path, Hochmair 

and Fu (2013), i.e., show a more complex computational 

method with the additional criteria "scenic route" and "route 

with least bicycle-car interactions". 

Other routing strategies include the previous generation of a 

cost surface. Subsequently, these continuous fields are 

constrained by road networks (Karrais et al., 2014). There are 

numerous possibilities of connecting surface information with 

road network segments. Examples for the latter routing 

strategies are computations of the safest paths for motorised 

tourists based on recent crime reports (Keler and Mazimpaka, 

2016) or of paths with the best available air quality (Karrais et 

al., 2014). 

Another issue is the complexity of the underlying 

transportation infrastructure. Krisp and Keler (2015) provide 

routing options for driving beginners in Munich that avoid 

complicated crossings by defining them using the number of 

nodes they contain. Crossings with high complexity are 

represented as obstacle polygons that are avoided by driving 

beginners. 

The implementation of the mentioned strategies mostly 

relies on the Algorithm of Dijkstra (1959) as a subroutine, 

which iterates through a network calling the values of edges, 

nodes or pairs of edges.  

The aim of this work is to define driving situations at 

intersections and respectively to define the terms "turning" 

and "straight ahead". We want to classify these situations 

according to the composition of the intersection and to give 

them values to make a computation of routes possible. This 

classification leads to an algorithm we implemented in java. 

 

 

2 Definitions of turn and straight 

In this section, we define the more complex process of turning 

and the less complex situation of going straight ahead. The 

definitions base not on absolute values like the angle of 

turning. 
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Abstract 

Recent services for car navigation include selections for computing the shortest, fastest or most economic route between origin and 

destination. Our idea is to compute the least complex route, which might be challenging, since there is no consistent definition of 

complexity. We focus on the complexity of road intersections, which is experienced by vehicle drivers with the turning motion itself in 
selected crossroads. Therefore, we define weights for different turning possibilities. In a case study in Le Havre, we compute the least 

complex path on the underlying road network. First results show differing routes comparing to shortest path based on Dijkstra’s Algorithm. 
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We define the situations depending on the composition of 

the current intersection respectively the conditions of the 

situation. In a first step, we make rules of turning and driving 

straight ahead. We summarize the possible situations in a 

table and give them values, which classify the situations at its 

best. 

 

 

2.1 Turn situation 

There are 3 conditions that describe a turn situation, which are 

presented in Table 1. 

 

Table 1: The conditions of turn. 

Cond. 1 The road to follow is on the left/right side 

of the road on which the driver is currently 

driving 

Cond. 2 There has to be at least a second path 

option, at an angle greater than that of the 

first junction, in the direction of the traffic 

Cond. 3 Only the junction with the smallest angle is 

the turn junction 

 

 

2.2 Straight situation 

There are 3 conditions that describe a straight on situation, 

which are presented in Table 2. 

 

Table 2: The conditions of straight. 

Cond. 1 Going straight on is using the junction with 

the greatest angle to the road the driver is 

currently driving 

Cond. 2 Neither turn left or turn right applies to 

straight ahead 

Cond. 3 At the same obtuse angles that satisfy the 

second condition, the right arm is made 

2.3 Intersection diagram 

The previous definitions lead to the diagram in Figure 1 that 

summarizes the possible situations constructed by one single 

node and its degree from 2 to 4. 

 

The left and the right situation in the first row cannot be called 

turning because they infringe condition 2 of Table 1. 

 

 

2.4 Intersection classification 

Finally, the presented intersections in Figure 1 get a value as it 

is illustrated in Table 3. 

 

Table 3: Classification of the intersections. 

Degree Value 

Degree 2 0 

Degree 3 +straight 1 

Degree 3 + turning 2 

Degree 4 + straight 3 

Degree 4 + turning 4 

 

 

3 Case study 

We implemented an algorithm, which computes routes based 

on this intersection classification. For this implementation, the 

GraphStream (2016) java library was used and applied on a 

dataset of the French city Le Havre. The dataset consists of a 

connected graph in DGS format, which is routable. 

The algorithm of Dijkstra (1959) is the subroutine of this 

implementation, which is able to compute the shortest path in 

the light of the lengths of edges, nodes, or pairs of edges. 

Considering the complexity of intersections for this work, it 

iterates through pairs of edges and summarizes the values of 

their classification. 

Figure 1: Intersections with 1 node and its degree from 2 to 4. 
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We choose a small study area in Le Havre and first compute 

the shortest path (Figure 2) and then the least complex path 

(Figure 3) between two selected points. We want to compare 

the generated routes by total length and by accumulated 

complexity values. 

 

 

Figure 2: Shortest path with the aid of algorithm of Dijkstra. 

 
 
 
 

Figure 3: The least complex path. 

 
 

 

 

The shortest path in Figure 2 implies a length of about 3484 

m and the least complex path in Figure 3 a length of about 

4040 m. This means the least complex path in this case is 

nearly 16 % longer than the shortest path. 

By counting the values of the intersections, it becomes 

apparent that the shortest path in Figure 2 would have a 

complexity value sum of 7 and the least complex path in 

Figure 3 a complexity value sum of 3 (compare values in 

Table 3). 

The source node is set to 0. The least complex path 

algorithm works in both directions and, respectively, gets the 

same result. 

 

 

4 First findings and outlook 

Our first results of the proposed routing algorithm show 

reasonable least complex paths in many parts of Le Havre. 

This highlights the usefulness of the intersection scheme in 

Figure 1. 

The further steps in our approach would be the testing of the 

algorithm with randomly selected points within the road 

network. The Euclidean point distances between start and 

destination points should then vary between short and very 

long distances that go across the whole investigation area. The 

resulting generated random routes calculated by the algorithm 

of Dijkstra and our algorithm might then reveal eventual 

problems or challenges of the proposed technique. 

Computing the least complex path in a road network might 

be realized in different ways and can be adapted to selected 

investigation areas. Therefore, we need test results of other 

road networks from other cities. This facilitates also reasoning 

on our introduced intersection classification in Table 3 that 

might be then less suitable for Asian megacities than for the 

road network of Le Havre. 

Additionally, we want to include OpenStreetMap (OSM) 

road network information for testing our routing algorithm. 

The road network of OSM has one of the best qualities of 

accessible road network geodata (Stanica et al., 2013). Its 

quality was already evaluated for its suitability for vehicle 

routing by Graser et al. (2014). Additionally, OSM and in 

general VGI can help improving the quality of already 

established routing services (Bakillah et al., 2014), despite the 

fact that the accuracy and validity of OSM data is difficult to 

detect (Helbich et al., 2010). Nevertheless, we need to test the 

connectivity of selected OSM road networks for guaranteeing 

reliable applications. Therefore, we need to convert OSM road 

networks into routable connected graphs. 

Another motivation of the latter is to compare the proposed 

least complex path method with the technique by Krisp and 

Keler (2015) for computing the easiest to drive route. The 

latter technique is dependent on the node density of extracted 

OSM road segments. It might be interesting to observe if the 

produced results of both methods are comparable or 

fundamentally different. 
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