
1 Computing Routes

Most car navigation systems compute the shortest path, the

fastest path or the most economic one and calculate with the

attributes of the underlying graph. Some of the attributes

allow path calculations, which avoid toll roads or highways

based on the personal preferences of the driver. Additionally,

"real-time" information about traffic jams, for example, can

be taken in account in the route calculation to provide the user

with some alternatives. The automatic positioning function

(e.g. GPS) allows the navigation system to locate the user

constantly and to compare the driving behaviour with the

proposed route.

However, there are a few more navigation strategies, which

comply with a purpose. In case of human navigation,

explaining the best route to a tourist requires the simplest

route with a minimal set of instructions. This Simplest Path

concept proposed by Duckham and Kulik (2003) reduces the

amount of information by negotiation of intersections, where

users go straight. For navigating through an unknown

environment towards a visible target (landmark), the Least

Angle Strategy of Hochmair (2000) may be the best choice.

At an intersection, the agent takes the road with the least

deviation from the direct target direction. In case of bicycle

navigation, the scenery is a desirable route criteria but not

essential and hard to find. Hochmair and Navratil (2008) show

a method of finding scenic routes using standard shortest path

computation and the reducing of costs of edges by traversing

buffers around attractive places. Since the user is interested in

a compromise of a nice scenery and the common route

selection criteria shortest, fastest and simplest path, Hochmair

and Fu (2013), i.e., show a more complex computational

method with the additional criteria "scenic route" and "route

with least bicycle-car interactions".

Other routing strategies include the previous generation of a

cost surface. Subsequently, these continuous fields are

constrained by road networks (Karrais et al., 2014). There are

numerous possibilities of connecting surface information with

road network segments. Examples for the latter routing

strategies are computations of the safest paths for motorised

tourists based on recent crime reports (Keler and Mazimpaka,

2016) or of paths with the best available air quality (Karrais et

al., 2014).

Another issue is the complexity of the underlying

transportation infrastructure. Krisp and Keler (2015) provide

routing options for driving beginners in Munich that avoid

complicated crossings by defining them using the number of

nodes they contain. Crossings with high complexity are

represented as obstacle polygons that are avoided by driving

beginners.

The implementation of the mentioned strategies mostly

relies on the Algorithm of Dijkstra (1959) as a subroutine,

which iterates through a network calling the values of edges,

nodes or pairs of edges.

The aim of this work is to define driving situations at

intersections and respectively to define the terms "turning"

and "straight ahead". We want to classify these situations

according to the composition of the intersection and to give

them values to make a computation of routes possible. This

classification leads to an algorithm we implemented in java.

2 Definitions of turn and straight

In this section, we define the more complex process of turning

and the less complex situation of going straight ahead. The

definitions base not on absolute values like the angle of

turning.

Computing the least complex path for vehicle drivers based on

classified intersections

Robert S. Sladewski

University of Augsburg,

Institute of Geography

Alter Postweg 118

86159 Augsburg, Germany

robert.sladewski@gmx.de

Andreas Keler

University of Augsburg,

Applied Geoinformatics,

Institute of Geography

Alter Postweg 118

86159 Augsburg, Germany

andreas.keler@geo.uni-

augsburg.de

Andreas Divanis

University of Augsburg,

Institute of Geography

Alter Postweg 118

86159 Augsburg, Germany

andreasdivanis@web.de

Abstract

Recent services for car navigation include selections for computing the shortest, fastest or most economic route between origin and

destination. Our idea is to compute the least complex route, which might be challenging, since there is no consistent definition of

complexity. We focus on the complexity of road intersections, which is experienced by vehicle drivers with the turning motion itself in
selected crossroads. Therefore, we define weights for different turning possibilities. In a case study in Le Havre, we compute the least

complex path on the underlying road network. First results show differing routes comparing to shortest path based on Dijkstra’s Algorithm.

Keywords: Least Complex Path, Shortest Path, Vehicle Routing, Car Navigation Systems, Location Based Services (LBSs).

AGILE 2017 – Wageningen, May 9-12, 2017

We define the situations depending on the composition of

the current intersection respectively the conditions of the

situation. In a first step, we make rules of turning and driving

straight ahead. We summarize the possible situations in a

table and give them values, which classify the situations at its

best.

2.1 Turn situation

There are 3 conditions that describe a turn situation, which are

presented in Table 1.

Table 1: The conditions of turn.

Cond. 1 The road to follow is on the left/right side

of the road on which the driver is currently

driving

Cond. 2 There has to be at least a second path

option, at an angle greater than that of the

first junction, in the direction of the traffic

Cond. 3 Only the junction with the smallest angle is

the turn junction

2.2 Straight situation

There are 3 conditions that describe a straight on situation,

which are presented in Table 2.

Table 2: The conditions of straight.

Cond. 1 Going straight on is using the junction with

the greatest angle to the road the driver is

currently driving

Cond. 2 Neither turn left or turn right applies to

straight ahead

Cond. 3 At the same obtuse angles that satisfy the

second condition, the right arm is made

2.3 Intersection diagram

The previous definitions lead to the diagram in Figure 1 that

summarizes the possible situations constructed by one single

node and its degree from 2 to 4.

The left and the right situation in the first row cannot be called

turning because they infringe condition 2 of Table 1.

2.4 Intersection classification

Finally, the presented intersections in Figure 1 get a value as it

is illustrated in Table 3.

Table 3: Classification of the intersections.

Degree Value

Degree 2 0

Degree 3 +straight 1

Degree 3 + turning 2

Degree 4 + straight 3

Degree 4 + turning 4

3 Case study

We implemented an algorithm, which computes routes based

on this intersection classification. For this implementation, the

GraphStream (2016) java library was used and applied on a

dataset of the French city Le Havre. The dataset consists of a

connected graph in DGS format, which is routable.

The algorithm of Dijkstra (1959) is the subroutine of this

implementation, which is able to compute the shortest path in

the light of the lengths of edges, nodes, or pairs of edges.

Considering the complexity of intersections for this work, it

iterates through pairs of edges and summarizes the values of

their classification.

Figure 1: Intersections with 1 node and its degree from 2 to 4.

AGILE 2017 – Wageningen, May 9-12, 2017

We choose a small study area in Le Havre and first compute

the shortest path (Figure 2) and then the least complex path

(Figure 3) between two selected points. We want to compare

the generated routes by total length and by accumulated

complexity values.

Figure 2: Shortest path with the aid of algorithm of Dijkstra.

Figure 3: The least complex path.

The shortest path in Figure 2 implies a length of about 3484

m and the least complex path in Figure 3 a length of about

4040 m. This means the least complex path in this case is

nearly 16 % longer than the shortest path.

By counting the values of the intersections, it becomes

apparent that the shortest path in Figure 2 would have a

complexity value sum of 7 and the least complex path in

Figure 3 a complexity value sum of 3 (compare values in

Table 3).

The source node is set to 0. The least complex path

algorithm works in both directions and, respectively, gets the

same result.

4 First findings and outlook

Our first results of the proposed routing algorithm show

reasonable least complex paths in many parts of Le Havre.

This highlights the usefulness of the intersection scheme in

Figure 1.

The further steps in our approach would be the testing of the

algorithm with randomly selected points within the road

network. The Euclidean point distances between start and

destination points should then vary between short and very

long distances that go across the whole investigation area. The

resulting generated random routes calculated by the algorithm

of Dijkstra and our algorithm might then reveal eventual

problems or challenges of the proposed technique.

Computing the least complex path in a road network might

be realized in different ways and can be adapted to selected

investigation areas. Therefore, we need test results of other

road networks from other cities. This facilitates also reasoning

on our introduced intersection classification in Table 3 that

might be then less suitable for Asian megacities than for the

road network of Le Havre.

Additionally, we want to include OpenStreetMap (OSM)

road network information for testing our routing algorithm.

The road network of OSM has one of the best qualities of

accessible road network geodata (Stanica et al., 2013). Its

quality was already evaluated for its suitability for vehicle

routing by Graser et al. (2014). Additionally, OSM and in

general VGI can help improving the quality of already

established routing services (Bakillah et al., 2014), despite the

fact that the accuracy and validity of OSM data is difficult to

detect (Helbich et al., 2010). Nevertheless, we need to test the

connectivity of selected OSM road networks for guaranteeing

reliable applications. Therefore, we need to convert OSM road

networks into routable connected graphs.

Another motivation of the latter is to compare the proposed

least complex path method with the technique by Krisp and

Keler (2015) for computing the easiest to drive route. The

latter technique is dependent on the node density of extracted

OSM road segments. It might be interesting to observe if the

produced results of both methods are comparable or

fundamentally different.

References

Bakillah, M., Lauer, J., Liang, S., Zipf, A., Arsanjani J. J.,

Mobasheri, A. and Loos, L. (2014) Exploiting Big VGI to

Improve Routing and Navigation Services. In: Karimi, H.

(eds.) Big Data Techniques and Technologies in

Geoinformatics. Boca Raton, CRC Press, pp. 175-190.

Dijkstra, E. W. (1959) A Note on Two Problems in

Connexion with Graphs. Numerische Mathematik, 1(1): 269-

271.

Duckham, M. and Kulik, L. (2003) “Simplest” Paths:

Automated Route Selection for Navigation. In: Kuhn, W.,

Worboys, M. F. & Timpf, S. (eds.) Spatial Information

Theory. Foundations of Geographic Information Science:

International Conference, International Conference, COSIT

2003, Kartause Ittingen, Switzerland, September 24-28, 2003.

Proceedings, pp. 169-185.

GraphStream (2016) GraphStream. A Dynamic Graph

Library. http://graphstream-project.org/.

Graser, A., Straub, M. and Dragaschnig, M. (2014) Is OSM

Good Enough for Vehicle Routing? A Study Comparing

Street Networks in Vienna.” In: Gartner, G. & Huang, H.

(eds.) Progress in Location-based Services, Lecture Notes in

Geoinformation and Cartography. Berlin, Springer, pp. 3-18.

http://graphstream-project.org/

AGILE 2017 – Wageningen, May 9-12, 2017

Helbich, M., Amelunxen, C., Neis, P. and Zipf, A. (2010)

Investigations on Locational Accuracy of Volunteered

Geographic Information Using OpenStreetMap Data. In:

GIScience 2010 Workshop on the role of Volunteered

Geographic Information using OpenStreetMap Data. Zurich,

Switzerland.

Hochmair, H. H. (2000) “Least Angle” Heuristic:

Consequences of Errors During Navigation. In: GIScience

2000, pp. 282-285.

Hochmair, H. H. and Navratil, G. (2008) Computation of

Scenic Routes in Street Networks. In: Geospatial Crossroads

@ GI Forum ’08: Proceedings of the Geoinformatics Forum

Salzburg, pp. 124-133.

Hochmair, H. H. and Fu, Z. J. (2009) Web Based Bicycle Trip

Planning for Broward County, Florida. GIS Center, 2,

http://digitalcommons.fiu.edu/gis/2.

Karrais, N., Keler, A. and Timpf, S. (2014) Routing through a

continuous field constrained by a network. In: Stewart, K.,

Pebesma, E., Navratil, G., Fogliaroni, P. & Duckham, M.

(eds.) Extended Abstract Proceedings of the GIScience 2014,

pp. 57-61. Vienna, Austria.

Keler, A. and Mazimpaka, J. D. (2016) Safety-aware routing

for motorised tourists based on open data and VGI. Journal of

Location Based Services, 10(1), 64-77.

Krisp, J. M. and Keler, A. (2015) Car navigation – computing

routes that avoid complicated crossings. International Journal

of Geographical Information Science, 29(11), 1988-2000.

Stanica, R., Fiore, M. and Malandrino, F. (2013) Offloading

floating car data. In: Proceedings of the 2013 IEEE 14th

International Symposium and Workshops on a World of

Wireless, Mobile and Multimedia Networks (WoWMoM), pp.

1-9.

