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1 Introduction 

1.1 Cities 

Because of their importance and role as a primary “human 

ecosystem,” cities have always attracted great attention from 

researchers from both the social and earth sciences. Cities have 

played a key role in human and social development throughout 

history and continue to do so, as they draw vast numbers of 

people into a safe, organized, and a culturally rich environment, 

enabling creative interaction, developing critical mass, and 

generating economies of scale (Bettencourt et al. 2007; Batty 

2013).  

With urban population expected to continue growing in 

coming decades (Bettencourt 2013), commercial activities play 

a fundamental role in providing goods, services and are part of 

cities’ fabric.  The study of these activities is a relevant matter 

for policy makers and urban planners. New tools are needed to 

answer the questions about current and future trends. 

 

 

1.2 Machine Learning 

The field of Statistics is constantly challenged by the problems 

that science, policy and industry brings to its door. With the 

advent of computers and the information age, statistical 

problems have exploded both in size and complexity. Vast 

amounts of data are being generated in many fields, and the 

statistician’s job is to make sense of it all: to extract important 

patterns and trends, and understand “what the data says.” We 

call this learning from data (Friedman et al. 2001). 

This paper describes how machine learning can be applied to 

predict the densities of commercial activities in cities. It will 

start by describing a particular supervised machine learning 

method called Gradient Boosting. Then will give an overview 

of the data used. The methodological chapter will demonstrate 

how to combine the two. To finish, the visualisation and 

analysis of the results will help make an assessment of the 

predictions. 

 

2 Machine Learning: Boosting 

“Boosting” is a general method for improving the performance 

of any learning algorithm. Theoretically, boosting can 

significantly reduce the error of any “weak” learning algorithm 

that consistently generates classifiers which need only to be a 

little bit better than random guessing.  

By repeatedly running a given weak learning algorithm on 

various distributions of the training data, and then combining 

the weak learner classifiers into a single composite classifier 

(Freund and Schapire 1996). 

 

2.2 Gradient Boosting 

Gradient boosting (GB) algorithm iteratively constructs and 

boosts a series of decision trees, each being trained and pruned 

on examples that have been filtered by previously trained trees. 

The incorrectly classified examples by the previous trees are 

resampled with higher probability to give a new probability 

distribution for the next ace in the ensemble to train on 

(Drucker 1995; Breiman 1997; Friedman 1997; Friedman 

2001). 
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It constructs additive regression models by sequentially 

fitting a parameterized function (base learner) to current 

"pseudo'-residuals by least squares or other measurements at 

each iteration. The pseudo-residuals are the gradient of the loss 

functional being minimized, with respect to the model values 

at each training data point evaluated at the current step 

(Friedman 2002; Hastie 2009). 

In the example decision trees ensemble regression bellow 

(figure 1), each tree predicts a real value. These three 

predictions are then combined to produce the ensemble’s final 

prediction. The predictions combinations algorithms can use 

different techniques depending on the prediction task. In the 

case below the average between decision trees gives the final 

prediction. 

 

Figure 1: Ensemble of decision trees used for regression. 

 
Source: Joseph Bradley and Manish Amde posted in 

Engineering Blog January 21, 2015 

 

Despite the potential benefits of promised by the theoretical 

results, the true practical value of can only be assessed by 

testing the method on real machine learning problems. The first 

provably effective boosting algorithms were presented by 

Schapire and Freund (Freund and Schapire 1996). 

 

3 Data used 

The data used in this paper was mainly generated by the LUISA 

(Land Use-based Integrated Sustainability Assessment) 

territorial modelling platform. This platform is part of the 

European Commission – Joint Research Centre (JRC) located 

in Ispra, Italy.  

 

3.1 LUISA modelling platform 

LUISA is primarily used for the ex-ante evaluation of EC 

policies that have a direct or indirect territorial impact. Beyond 

a traditional land use model, LUISA adopts a new approach 

towards activity-based modelling based upon the endogenous 

dynamic allocation of population, services and activities. 

LUISA allocates (in space and time) the settlement of socio-

economic activities (e.g. housing, industry, services, tourism, 

etc.) and the setting of infrastructures (e.g. for transport, 

energy, etc.) (Claudia et al. 2014). 

 

3.2 LUISA outputs 

The final output of LUISA is in the form of a set of spatially 

explicit indicators that can be grouped according to specific 

themes (land-use, bio-physical, ecological, economic, and 

social). The indicators are projected in time until typically year 

2030 or 2050, and can be represented at various levels (grid, 

national, regional or other). 

The following table 1 enumerates the specific datasets used 

and their type: 

Table 1: Datasets and types used to create the model. 

Dataset (code) Type 

Population (Pop) integer 

Accessibility (Ai) float 

Average Travelling Distance (Avd) float 

Maximum Travelling Distance (MaxDi) float 

Built-up percentage (BuiltUp) integer 

Distance to Functional Urban Area centre 

(LDist) 

float 

Distance to closest city centre (CDist) float 

Bus stop density (Bus) integer 

Km of local roads density (LocalRoad) float 

Gross Value Added (GVA) float 

Degree of urbanisation (DegUrb) class 

Building age (BuildAge) class 

Commercial activities density (ComDens) integer 

 

4 Methodology 

4.1 Feature Engineering 

The first typical step on machine learning involves 

harmonizing and pre-processing the data. This is communally 

known as “feature engineering” and can have an important 

influence on the predictions. 

Because gradient boosting uses a numerical matrix as input, 

all used datasets were converted to 1 km2 grid rasters. Knowing 

the longitude/latitude of each grid-cell, it was possible to create 

a matrix where each row represented a cell and the columns its 

feature values. Null values were converted to zero in order to 

fill-up any data gaps. 

Since London Functional Urban Area (FUA) was selected for 

this exercise, only the grid cells within its boundaries were 

considered. These boundaries follow the most recent 

Organisation for Economic Co-operation and Development 

definition (OECD 2014). 

 

4.2 Parameter optimization 

The following methodological steps were done using the scikit-

learn python package. It is an open-source, simple and efficient 

tools package, mainly focused for data mining and analysis. It 

is built on NumPy, SciPy and matplotlib. 

Machine learning involves tuning parameters specific to each 

model. Gradient Boosting has around 15, each one with a range 

of possible values. Since these combinations can sum-up to 

several millions, there are several search techniques that go 

through these combinations and output accuracy measurements 

for each. This allows selecting potential models we might 

further test. 

Randomized Search implements a randomized search over 

these parameters, where each setting is sampled from a 

distribution over possible parameter values. This has two main 

benefits over an exhaustive search (Bergstra and Bengio 2012): 

 

https://databricks.com/blog/author/joseph
https://databricks.com/blog/author/manish-amde
https://databricks.com/blog/category/engineering
https://databricks.com/blog/2015/01/21/random-forests-and-boosting-in-mllib.html
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- A budget can be chosen independent of the number of 

parameters and possible values; 

- Adding parameters that do not influence the performance 

does not decrease efficiency. 

 

Table 4.2 depicts the parameters tested, their values range 

and how they impact the model. In all the other parameters not 

included, the default value was used. 

Table 4.2 Randomized Search parameters, used value, 

description and impact on the model 

Parameter Used Value Description Impact 

n_estimators [1000, 2000, 

3000, 5000] 

The number 

of trees to fit 

sequentially 

-Tune using Cross-

Validation for a 

given learning rate 

 -Higher value for 

low learning rate but 

computationally 

expensive 

learning_rate [1, 0.1, 0.001, 

0.0001] 

The effect of 

each tree on 

the outcome 

is shrunk by 

this factor. 

-Lower always 

preferred 

 -Inversely 

proportional to 

n_estimators 

 -Use high value for 

tuning and lower for 

final submissions 

max_depth [1, 2, 3, 4, 5, 

6] 

The 

maximum 

depth of each 

tree. None 

specified no 

limit on 

depth. 

-Lower values 

prevent overfitting 

 -Risk of underfitting 

with too low values 

 -Tune using Cross-

Validation 

 -typical 5-20 

subsample [0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 

1.0] 

The fraction 

of 

observations 

to be used in 

individual 

tree 

 - Reduces variance 

in model 

 - Tune using Cross-

Validation 

-Typical value 0.8 

loss ['ls', 'lad', 

'huber', 

'quantile'] 

The cost 

function to 

be minimized 

by 

optimization 

-Use default value if 

not sure: 

  -Class: deviance / 

exponential  

 -Regressor: ls / lad / 

huber / quantile 

 

4.3 Selected model 

Using R2 as score metric, from 200 tested models 3 were 

selected for further analysis. For these the Deviance was plotted 

and the best performing one was selected (figure 4.1). The final 

model had the following parameters: 

alpha=0.9,criterion='friedma_mse',init=None,learning_rat

e=0.001,loss='ls',max_depth=3,max_features='sqrt',max_leaf

_nodes=None,min_impurity_split=1e-

07,min_samples_leaf=1,min_samples_split=2,min_weight_fr

action_leaf=0.0,n_estimators=10000,presort='auto',random_

state=None, subsample=1.0, verbose=0, warm_start=False). 

4.4 Bias-Variance trade-off (under/overfit) 

Once selected the model, the input data described on point 4.1 

was split into Train/Test sets. Using the most common values 

in this procedure, the Train set represented 80% of the total 

while Test 20%. This step allows training a model on part of 

the data and then test it on a sample not known.  

A model has strong bias when there is a strong error that is 

introduced by approximating a complicated relationship, by a 

much simple model. It is the difference between the truth and 

what you expect to learn. In this case the model is under-fitting. 

By the contrary a strong variance is the amount by which a 

model would change if we estimated it using a different training 

data. If a model has high variance, then small changes in the 

training data can result in large changes in the model. This is 

also known as overfitting. 

By plotting the Train/Test deviance for each number of 

estimators and seeing the difference between them, we can 

have an estimation if our model is under/overfitting. 

As it can be seen on figure 2 bellow, the train and test 

deviances follow the same trend and the gap between them is 

not too wide. Further, the test deviance line continues to lower 

and does not invert its sign. This demonstrate that the model is 

not under or overfitting. 

 

Figure 2: Train and test sets deviance lines. 

 
Using cross-validation (CV: a more robust train/test split 

technique) the normalized scores were plotted (figure 3). The 

test cross-validation reaches a R2 score of 0.69. It can also be 

seen the model learning as more decision trees are constructed 

and ensembled. The green area surrounding the cross-

validation score represents the standard variation and it is 

almost constant during the entire model fitting. 

 

Figure 3: Training and cross-validation scores and standard 

deviation 
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5 Model analysis 

5.1 Feature importance 

Features importance can be measured and ranked relative to 

the overall model fit using the corresponding inbuilt scikit-

learn attribute. The feature with highest value is set to 100 and 

all others normalized relative to it. Figure 4 depicts the 

normalized values. 

Accessibility, local road density, distance to Funtional Urban 

Area (FUA) centre, bus stops density and population were the 

most important when training this specific model. The Degree 

of Urbanisation (classification in 3 classes: Cities, Towns & 

Suburbs and Rural Areas (Dijkstra and Poelman 2014)) was 

ranked last. This might be partially related due being a class 

feature. 

 

Figure 4: Normalized feature importance. 

 
 

5.2 Partial dependence 

Partial dependence plots show the dependence between the 

target function and a set of features, marginalizing over the 

values of all the others. While the increase of distance to FUA 

centre influences negatively the density of commercial 

activities, the accessibility has an opposite effect. Higher values 

favour the allocation of commercial activities (figure 5). 

 

Figure 5: Partial dependence for Distance to FUA and 

Accessibility. 

 
Combining two variables can give a perspective on how they 

interact. Local road density only starts impacting the model 

when bus stops density is above the 15 and reach its highest 

when bus stops are at least 45 (figure 6). 

 

 

 

 

 

 

 

 

Figure 6: Combined partial dependence between local 

roads and bus stops. 

 
Applying the same approach, population levels above 250 

and built-up percentages higher than 80% favour more 

significantly the presence of commercial activities on those 

cells. 

 

6 Predictive modelling 

6.1 Applying the model to 2030 

Machine Learning is often synonymous of predictive 

modelling (Geisser 1995; Finlay 2014). This chapter 

demonstrates how the previous trained model was used to make 

future predictions. 

Once the model was trained with LUISA 2010 datasets, it 

was then possible to use it to make predictions. By following 

the matrix structure presented at table 4.1 but using LUISA 

outputs for 2030, we could then ask the model to predict for 

each grid cell, the value of commercial activities. This assumed 

that the same interactions and dependences between our 

features and the predictor for 2010, would be kept for 2030. 

An important advantage of Machine Learning is once trained 

a model, the prediction for a new dataset is done extremely fast. 

For London’s 7035 grid cells, the model took less than 3 

seconds to predict each value for 2030. 

 

6.2 Mapping 2010 and 2030 commercial activities 

Using the longitude/latitude coordinates for each cell, it was 

possible to study the changes between the two considered 

years. For that, the data was normalised. The 2010 cell with 

highest commercial activities was set at 100, while cells with 

non-existent activities were given 0. Applying the 2010 min-

max normalisation to 2030, allowed their comparison. Figures 

7 and 8 map London’s 2010 and 2030 commercial activity and 

population per km2. 
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Figure 7: London Commercial Activities and Population  

per km2 for 2010

 
 

Figure 8: London Commercial Activities and Population  

per km2 for 2030 

 
 

7 Results and discussion 

At first glance, the gradient boosting model predicts some 

changes mainly in London’s FUA centre and northeast areas. 

Natural breaks was used in the colour classification due the 

high values located in the centre. 

 

7.1 Concentric circles 

One way to measure the changes while moving further way 

from the city centre, is by calculating the average of 

commercial activities within each concentric circle. This circles 

are defined by having their centre in the FUA historical centre 

and by incrementing 1 km to the radius of the previous one. 

This was done till the last circle had a 85 km radius.  This 

approach was executed on both 2010 and 2030 results and are 

represented on the following graph (figure 9). 

 

 

 

 

 

 

 

Figure 9: London’s commercial activities by concentric 

circles. 

 
 

Comparing both years, the trained model predicts a reduction 

closest to the FUA centre (distances bellow 20 km), a stable 

situation for medium distances (between 20 and 65 km) and an 

increase in the activities for distant areas (above 65 km). 

 

8 Conclusions 

Machine Learning models, like gradient boosting, have 

potential to be used in urban planning and policy making. They 

can provide new ways for analysing in-depth the considered 

features, including their interactions and once properly trained 

and validated used to make predictions. 

Policy scenarios can also be included. Using the case study 

described in this paper, future investments in road 

infrastructures, public transportation, and higher urban 

compactness could be reflected in the datasets used for the 2030 

predictions. 

Further developments include the application of this 

methodological approach to other cities and functional urban 

areas within the European Union. This would allow 

characterizing their current situation and future trends 

Further, once commercial activities data is available for other 

years, the model could be trained on the real density values 

change and the predicted results compared. This would allow 

validating the model, further increasing its value as a planning 

tool. 
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