
1 Introduction 

Monitoring of the human-induced changes and especially of 
urban areas was always a key task that is also increasingly in 
demand for a number of applications (urban planning, health 
monitoring, ecology, etc.)  [1].  

Understanding the urban growth phenomenon is among the 
major issues that public services have to deal with. Today, 
more than half of the world population lives in urban areas, 
and it is estimated that this will reach up to two-thirds by 2025 
[2].  

The recent launch of the Sentinel-2A satellite in June 2015 
makes available data with a minimum spatial 
resolution of 10 m, 13 spectral bands, wide acquisition 
coverage and short time revisits, which opens 
a large scale of new applications [3].  

Recently, deep learning has become the new state-of-the-art 
solution for image processing. Given its success, deep 
learning based techniques have been intensively used in 
several distinct tasks of different domains, including remote 
sensing, where they have demonstrated excellent performance 
on different tasks, such as VHSR, hyper spectral and LIDAR 
data classification [4,5,6], buildings and roads extraction 
[7,8], or image pansharpening [9]. 

In practice, very few people train an entire Convolutional 
Network from scratch (with random initialization), because it 
is relatively rare to have a dataset of sufficient size. Instead, it 
is common to pretrain a CNN on a very large dataset (e.g. 
ImageNet, which contains 1.2 million images with 1000 
categories), and then use it a fixed feature extractor, which is 
our case. 

In this paper, a method based on exploiting Sentinel-2 
images is proposed to extract urban areas. The approach relies 

on deep features extraction using a pre-trained CNN and 
random forest classification. Experiments are performed on 
data from the PoDelta area, in Italy. 

 

2 Data and methods  

In this research, a patch-based analysis approach is adopted. It 
is performed in three main steps: superpixel based image 
segmentation and patches generation, CNN based feature 
extraction and supervised classification. 

 

2.1 Data description 

In this work, we evaluate our approach on the Sentinel-2 
dataset that consists of 2 multispectral sub-images acquired 
over the area of PoDelta, Italy on 04 July 2015. The size of 
the two images is 5490x5490 pixels and they are composed of 
3 channels (NIR-R-G). The spatial resolution of the images is 
10 meters per pixel. The reference set used for the example 
was extracted from the vector version of Corine Land Cover 
(CLC) product of year 2006 (Copernicus Land Monitoring 
Services, http://land.copernicus.eu/pan-european/corine-land-
cover/clc-2006/). The positive examples for the “built-up” 
class were extracted from the CLC classes of continuous 
urban fabric (code 1.1.1), discontinuous urban fabric (code 
1.1.2), and industrial or commercial units (code 1.2.1). The 
CLC reference set can be considered as affected by thematic 
and spatiotemporal noise as regarding the target classes in the 
Sentinel-2 image. A time gap of nine years (2006 for the CLC 
and 2015 for the Sentinel-2 data) can be assumed between the 
image data and the CLC data [10]. The reference set used for 
the example is shown in Figure 1. The positive examples for 
the built-up class as extracted from the CLC source, are 
represented in white. 
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Monitoring of the human-induced changes and the automatic mapping of urban areas were always a main concern to 
researchers in the field of remotely sensed image processing. Thus, several techniques have been proposed to saving technicians 
from interpreting and digitizing hundreds of areas by hand. In this work, we propose to exploit the benefit of Sentinel-2 images 
to extract urban areas. The approach relies on deep features extraction using a pre-trained convolutional neural network (CNN) 
and random forest classification. Experiments are performed on PoDelta area, in Italy. Results, validated with a Kappa index 
over 0.74, illustrate the great interest of Sentinel-2 in operational projects, such as Corine land-cover mapping, and since such an 
approach can be conducted on very large areas, such as the European or global scale. 
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Figure 1: Presentation of the study area. 
 

  

a. Training image b. Training Ground truth c. Localization of the study area 

2.2 Superpixel-based labeling approach 

During the feature extraction, training and testing phases, 
CNN needs input windows of a fixed size. Our analysis is thus 
performed based on patches derived from superpixel 
segmentation instead of the time consuming sliding windows 
strategy [11]. In order to take into account the limits between 
the different classes in the original image, we compute 
superpixels with the SLIC algorithm (Simple Linear Iterative 
Clustering) [11]. 
 Superpixels typically cover the whole image; they are 
distributed regularly with respect to the nature of the input 
image. The desirable variation of superpixels size is 
preferably small and the boundary of superpixels has to match 
the natural boundary of the different objects present in the 
image. The parameters of the superpixel extraction are tuned 
in order to get around 100~200 pixels by superpixel, which is 
found as the best compromise between the appearance of the 
final classified image and the segmentation computation time. 
The patches are 32 by 32 pixels subimages representing the 
contextual neighborhood of the objects. One patch is 
generated for each superpixel centered on the pixel 
corresponding to its centroid. Figure 2 presents the process of 
patch creation. 

 
Figure 2. Generation of patches from VHSR image 

 

 
 

2.3 Convolutional Neural Networks (CNN) 

CNNs have some characteristics that distinguish them 
from traditional feed-forward neural networks. Unlike 
traditional feed-forward layers, convolutional layers have 
neurons with limited receptive fields allowing the processing 
of local image region that affects a particular element in the 
output. Moreover, as their name reflects, the output of this 
layer is computed as a spatial convolution using a learned 
filter over its input. Two main contributions have been the 
proposal of the rectified linear unit (ReLu) [12], which allows 
a faster training, and the dropout strategy [13] to reduce 
overfitting.  

CNN architecture typically comprises several layers of 
different types [14]:  

1) Convolutional layers. They compute the convolution 
of the input image with the weights of the network. These 
layers are characterized by few parameters: the size of filters, 
the filter spatial support, the step between different windows 
and an optional zero-padding which controls the size of the 
layer output. As the layers are deeper, the features extracted 
from the image are higher-level. 

2) Pooling layers. The mission of these layers is to reduce 
the size of the input layer through some local non-linear 
operations. Their most important parameters are the support of 
the pooling window and the step between different windows. 

3) Normalization layers. Their objective is to improve 
generalization of the CNN. Neurons typically used in these 
layers are sigmoid type Fully-connected layers. These layers 
have the capacity of abstracting the low-level information 

generated in previous layers for a final decision. Figure 3 
shows the architecture of the CNN used as feature extractor. 

.  
Figure 3: pre-trained CNN architecture. 
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2.4 Random forest classification 

Random forests (RF) are similar to tree classifiers, given 
that these do not use a method of “bootstrapping” that can be 
improved upon. In training, the random forest algorithm 
creates multiple trees, each trained on a bootstrapped sample 
of the original training data, and searches only across a 
randomly selected subset of the input variables to determine a 
split (for each node). For classification, each tree in the 
random forest casts a unit vote for the most popular class at 
input x. The output of the classifier is determined by a 
majority vote of the trees. The random forest algorithm can 
handle high dimensional data, which is the case of deep 
features and use a large number of trees in the ensemble. As 
each tree is only using a portion of the input variables in a 
random forest, the algorithm is considerably lighter than 
conventional bagging (bootstrap aggregating) [15] with a 
comparable tree-type classifier. 

 

3 Experiments and results 

After SLIC based segmentation of the training image 
(Figure 1 a), for each superpixel the deep feature was 
calculated using the pre-trained CNN for a patch of 32 by 32 
pixels around its centroid. A supervised random forest 
classifier with 50 trees was trained, then tested on unseen test 
sub-image (figure 4 a). In this work, CNN is exploited only as 
a feature extractor and classification experiments have been 
made by using external classifier. The deep features, are 
obtained by removing the last classification layer and 
considering the output of previous layers. The individual 
pixels of the superpixels were labeled as the class designed by 
the random forest classifier. 

We evaluated the classification of deep features by 
employing two (02) different criteria: the estimated Cohen’s 
Kappa statistic (k), and the F1 score (F1). The first metric k is 
an overall accuracy metric which compensates for the chance 
agreement between classes. It is calculated by multiplying the 
total number of pixels in all the ground truth classes (N) by 
the sum of the confusion matrix diagonals (xkk), subtracting 
the sum of the ground truth pixels in a class times the sum of 
the classified pixels in that class summed over all classes 
(∑ ��Σ�Σ�� ), and dividing by the total number of pixels squared 

minus the sum of the ground truth pixels in that class times 
the sum of the classified pixels in that class summed over all 
classes. 
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The second score F1 is the average of the harmonic means 

between precision and recall for each class. This measure is 
sensitive to class accuracy, but additionally takes into account 
the number of correctly classified pixels over the number of 
predicted labels for each class (built-up and non-built-up 
classes) [16]. 
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The results of the superpixel-based classification using the 

pre-trained CNN features have been compared to four (04) 
state of the art texture features: Integrative co-occurrence 

matrices (ICOO) and opponent Gabor (OGabor) features, nad 
wavelets features [17]. The comparison study was conducted 
using three bands image (nir, red and green spectral bands). 
Resulting classified images are given in Figure. 4. The 
evaluation of classification in terms of precision, recall, F1 
score and Kappa index are summarized in Table 1. 

 
Table 1: classification results of the test image. 

 

 Precision Recall F1 score Kappa 

CNN 0.8228 0.7171 0.7663 0.7407 
ICOO 0.7603 0.6993 0.7285 0.7163 
OGabor 0.6606 0.6901 0.6750 0.6613 
Wavelet 0.7972 0.6767 0.7320 0.7195 
 
Table 1 shows that the CNN based method, using deep 

features improves F score and kappa statistic compared to 
literature texture analysis methods. For example the CNN 
based classification recorded an improvement of 0.03 kappa 
index compared the integrative co-occurrence matrices based 
texture analysis. The improvement was 0.08 and 0.02 
compared to the opponent Gabor, and wavelet methods 
respectively. 

 
Figure 4: classification maps of the test image. 

 

  

a. test image b. test ground truth 

  

c. CNN based map d. ICOO map 
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e. Gabor map f. Wavelet map 

Figure 4 shows that the CNN based map visual quality 
outperforms the remaining maps, which is the most similar to 
the test ground truth map. The previous results show the 
applicability of using pre-trained deep convolutional neural 
networks as feature extractor to classify Sentinel-2 images and 
extract urban areas.  

 

4 Conclusion 

We have applied pre-traind CNN deep features and random 
forest classifier for the detection of urban areas on Sentinel 2 
images. The deep convolutional neural network consists of 23 
layers. The proposed CNN based approach extracts deep 
features from 32-by-32 image patches that are extracted 
through using of superpixel segmentation based strategy. The 
obtained features are then classified using external supervised 
Random forest classifier.  The experiments demonstrated high 
kappa statistic and F1 score of the CNN deep features 
classification. The experimental results were promising and 
showed that the proposed method outperforms state of the art 
texture analysis methods. 
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