
The increasing amount of high-resolution spatio-temporal data 

is an asset to environmental modellers as it helps them to 

refine their simulation models. Incorporating big data sets in 

environmental models and analysing model results, however, 

comes at a cost: a high computational demand to perform 

model simulations. The heterogeneity of current computing 

hardware like multi-core CPUs, workstations with GPUs, or 

access to supercomputers potentially provides significant 

computing power to satisfy this demand. Making use of this 

power for simulation models, however, requires detailed 

knowledge of the underlying hardware and experience with 

designing parallel algorithms. In addition, these algorithms 

need to be implemented using an efficient system 

programming language and additional libraries such as 

OpenMP (e.g. Chapman et al., 2007) or OpenCL (Khronos 

Group, 2017). Domain scientists such as hydrologists or 

ecologists often lack this specific knowledge on parallel 

computing. Their emphasis is on exploratory building and 

analysis of simulation models. Consequently, models 

constructed by domain specialists mostly do not take full 

advantage of the available hardware. To support domain 

scientists in building efficient models, we propose to offer 

them a modelling framework with standard building blocks 

that they can freely combine into a model. The model building 

framework, as a result, needs to have built-in capabilities to 

make full usage of the available hardware. 

Developing such an environmental modelling framework 

imposes several challenges on the software developers of such 

a framework. On the one hand, the modelling code needs to be 

plain and understandable for domain scientists such that 

straightforward model construction and modification is 

guaranteed. On the other hand, the execution of the 

constructed models needs to be runtime efficient. Without 

knowing the complexity of the problem provided by the 

modeller (i.e. the spatial and temporal extent, the number and 

sequence of operations in the model), several optimisation 

approaches are feasible. For example, optimisations can be 

performed on individual operations or the whole model (e.g. 

Huang et al., 2015), by subdomain decomposition (e.g. Shook 

et al., 2016), or tasks need to be generated for a well-balanced 

execution (e.g. Donato, 2017). Ideally, a modelling 

framework supports the best use of available hardware 

independent of the combination of model building blocks the 

domain scientists use. 

Figure 1: Script to calculate the slope in PCRaster Python. By 

setting an environment variable the execution of slope will be 

either sequential or multithreaded, the script itself remains 

unchanged. 
  

 
  

We demonstrate our ongoing work on developing parallel 

algorithms and software for spatio-temporal modelling and 

demonstrate our work on PCRaster (Karssenberg et al., 2010) 

1) an environmental software framework tailored to domain 

scientists, providing a wide range of spatio-temporal model 

building blocks based on the map algebra concept (Tomlin, 

1990) and 2) the parallelisation of about 50 of these building 

blocks (i.e. local and focal) using a newly developed generic 

raster processing library. The Fern (2017) raster library is a 

highly generic software library written in C++ and provides 

shared-memory multiprocessing algorithms using standard 

C++11 threads. Its algorithms can be tailored to the 

configuration of a modelling framework. With manageable 

programming effort (e.g. matching data types between 

programming and domain language) we created a Python 

binding between the algorithm library and the PCRaster 

modelling framework. The resulting Python package can be 

used to execute models constructed with the modelling 

framework without having to make any changes to existing 

model code. An example implemented in PCRaster Python is 

given in Figure 1 showing a slope calculation from a digital 

elevation map. By default, the slope operation will be 

calculated sequentially. By simply setting the environment 

variable PCRASTER_NR_WORKER_THREADS to a 

number larger than one, the multithreaded slope operation will 

be executed. 

We show results obtained from synthetic and geoscientific 

simulation models indicating significant runtime 

improvements by using the new parallel local and focal 

operations. These operations are included in our code 

repository (PCRaster, 2017) and will be included in the next 

release package. We also outline three further challenges in 

processing big data sets. First, the performance of remaining 
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algorithms that interact with direct or distant neighbouring 

cells need to be improved. These algorithms, for example, 

calculate transport and accumulation of material in flow 

operations (based on the topography of a river catchment) and 

are often used in hydrological models. Second, using large 

model extents also increases the access time when reading 

inputs and writing model results to disk. We therefore also 

briefly discuss further potential improvements in enhancing 

disk I/O. Lastly, we plan to work on algorithms that divide the 

work across distributed memory systems, like a computer 

cluster. Several implementation strategies are feasible to reach 

distributed processing, such as building on MPI (e.g. Donato, 

2017), MapReduce (e.g. Shi et al., 2015), or Apache Spark 

(e.g. GeoTrellis, 2017). We plan to use HPX (Kaiser et al., 

2016), a C++ library and runtime system for parallel and 

distributed applications. 
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