
Archiving AIS messages in a Geo-DBMS

Martijn Meijers, Wilko Quak & Peter van Oosterom
Delft University of Technology

b.m.meijers|c.w.quak|p.j.m.vanoosterom@tudelft.nl

Abstract
Rijkswaterstaat has developed DIAMONIS, a network for AIS message reception. Vessels
broadcast – amongst other information – their position and identity in intervals ranging from
2 seconds to 3 minutes. This leads to a large volume of spatio-temporal data. The current
system architecture is not suited for archiving and analysing this large volume of historic
AIS messages. This poster shows the result of 2 studies [1, 2] into efficient storage of these
historic AIS messages using a Geo-DBMS (MongoDB and PostgreSQL).

Introduction

Within Rijkswaterstaat (RWS) AIS (Automated Identification System) messages
are received in real time with the DIAMONIS (Dutch Inland AIS monitoring In-
frastructure) network. The current architecture of this system is not suited for
archiving large amounts of historic AIS messages. The aim of this research is
to investigate how the messages can be stored, so that they can be queried
efficiently [1, 2].

Figure 1: The DIAMONIS network receives AIS messages transmitted by vessels

Sources: Kanmon Kaikyo Traffic Advisory Servic Center · Wikipedia · Vessel Finder (Roeland.J)

Main Objectives

1. Data volume on par with file based solution
2. Queries execute reasonably efficient for variety of use cases
3. All data stored for future use, but 4 message parameters directly available:

timestamp, message type (more than 20 message types, hence efficient sub-
selection needed), vessel identity and position

Figure 2: AIS message as received by DIAMONIS (see [3] for decoding)

!ABVDM,1,1,1,A,13an?n002APDdH0Mb85;8‘sn06sd,0*76

Origin End of
data /
Checksum

6-bit ASCII Encoded AIS data

AIS channel

Total number of messages /
Sequence number

Data and Methods

As AIS messages are received frequently for many vessels, the total data volume
is significant. Per week more than 80 million messages are received by DIAMO-
NIS (leading to over 1.5GB of raw message data per week). A limited dataset
with 523,477 AIS messages received for 30 different RWS vessels for 2 days in
November 2015 was loaded into both MongoDB and PostgreSQL. After an initial
test for analysing storage requirements, spatial indexing and query capabilities
were investigated.

Results

Storage requirements

Test data was loaded into both MongoDB, as well as in PostgreSQL to find how
both systems would perform with respect to storage size.

Table 1: Data types with their resulting table size

Solution Data type Size (MB) Factor to File

File Raw ASCII message + timestamp 27 —
MongoDB JSON 58 2.1×
PostgreSQL JSON 213 7.9×
PostgreSQL JSONB 273 10.1×
PostgreSQL varchar 35 1.3×
PostgreSQL bit vector 35 1.3×

Indexing, which is necessary to guarantee efficient access to individual records,
also requires additional storage space. In PostgreSQL, we defined database func-
tions to access the parameters of the AIS messages, stored as bit vector in the
DBMS. Using these functions, we created 4 functional indexes on the table.

Table 2: Functional indexes and their size

Index Type Column/Function Size (MB) Share (%)

Vessel ID B-Tree ais_mmsi(payload) 11 19
Message type B-Tree ais_type(payload) 11 19
Timestamp B-Tree timestamp 11 19
Geometry R-Tree ais_point(payload) 25 43

The total amount needed for storing the AIS messages in PostgreSQL based on
the bit vector data type, including functional indexes, is a factor 4 larger com-
pared to file based storage.

Table 3: Total storage size for PostgreSQL

Solution What Size (MB) Factor to File

PostgreSQL Table with bit vector 35
Indexes 58

93 3.5×

Queries

For a variety of use cases 2 queries are a starting point:
1. Location query: Find the last known position of a vessel (at a specific time).
2. Trajectory query: Give the historic positions of a vessel, i. e. points ordered by

timestamp and subsequently connected to straight line segments.
For example, using these queries an analysis can be carried out how many ves-
sels cross a line.

Figure 3: Analyse how many vessels cross a line

Discussion

� Both MongoDB and PostgreSQL can offer compact storage for AIS messages
� Structure developed in PostgreSQL based on bit vector type provides history of

all message content, while providing efficient access to often used parameters
� This takes a factor 4 more storage space than raw text file storage
� Data structure allows advanced spatial query capabilities (due to PostGIS)

Forthcoming Research

We bulkloaded AIS data that was already collected. However, archiving data in
real-time will be different: Re-indexing / re-clustering operations will be needed.
A possibility is to structure the data in 2 tables: An (unstructured) heap and an
indexed and clustered historic archive table.
How often to perform re-organization of the heap table into the historic archive?

References

[1] Irene de Vreede. Managing historic Automatic Identification System data by
using a proper Database Management System structure. Master’s thesis, TU
Delft, november 2016.

[2] Martijn Meijers, Peter van Oosterom, and Wilko Quak. Management of AIS
messages in a Geo-DBMS. Technical report, Delft University of Technology,
2016.

[3] Eric S. Raymond. AIVDM/AIVDO protocol decoding, 2016.

Acknowledgements

This work has been carried out in the framework of the ‘Rijkswaterstaat-TU Delft
Raamovereenkomst betreffende Samenwerking en Kennisuitwisseling op gebied
van Ruimtelijke Informatievoorziening’ (Reference 31103836).

http://www6.kaiho.mlit.go.jp/kanmon/eng/mg_2.htm
https://nl.wikipedia.org/wiki/Automatic_Identification_System
https://www.vesselfinder.com/ship-photos/109393

