
1 Introduction

AIS stands for Automated Identification System. The AIS

system is mainly used for improving safety at sea and inland

waters. Figure 1 illustrates that the system consists of different

components. Depending on the cruising speed of the vessel, a

transponder broadcasts its identity and position in intervals

ranging from 2 seconds to 3 minutes.

Figure 1: Components of the Automated Identification

System (AIS)

Source: www6.kaiho.mlit.go.jp/kanmon/

Rijkswaterstaat (RWS) maintains the main waterway

network in The Netherlands. Within RWS Automated

Identification System (AIS) messages are received in real time

with the Dutch Inland AIS Monitoring Infrastructure

(DIAMONIS) network. The current architecture of this

system is not suited for archiving copious amounts of historic

AIS messages.

2 AIS messages

Figure 2 shows an example AIS message. Figure 3 shows

two different encodings and some parameters after decoding

the message of Figure 2.

Figure 2: Sample AIS message encoded as NMEA sentence

(cf. Raymond 2016 for details on decoding)

!ABVDM,1,1,1,A,13an?n002APDdH0Mb85;8‘sn06sd,0*76

Origin End of

data /

Checksum

6-bit ASCII Encoded AIS data

AIS channel

Total number of messages /

Sequence number

Archiving AIS messages in a Geo-DBMS

Martijn Meijers

Delft University of Technology

Julianalaan 134

Delft, The Netherlands

b.m.meijers@tudelft.nl

Wilko Quak

Delft University of Technology

Julianalaan 134

Delft, The Netherlands

c.w.quak@tudelft.nl

Peter van Oosterom

Delft University of Technology

Julianalaan 134

Delft, The Netherlands

p.j.m.vanoosterom@tudelft.nl

Abstract

This paper reports on the result of two studies for using a geographical database management system for archiving Automated Identification

System (AIS) message data. In this paper, we analyse the storage (using MongoDB and PostgreSQL) and we give a more in-depth

description of a possible data model for archiving messages based on the bit vector type and functional indexes in PostgreSQL.

Keywords: AIS, MongoDB, PostgreSQL, database management system, bit vector, functional index

AGILE 2017 – Wageningen, May 9-12, 2017

Figure 3: Data from the sample message in Figure 2,

encoded as 6-bit ASCII, bit vector and some decoded

parameters

3 Using a Geo-DBMS for storing historic AIS

messages

The question we try to answer in this research is:

What is a suitable data management strategy for

archiving AIS message data in a Geographical

Database Management System (Geo-DBMS)?

The following requirements were considered:

1. Volume of storage must be on par with size of raw data

2. Spatial-temporal queries answered reasonably efficient

3. We prefer that full history is archived, and often used

parameters can be accessed efficiently.

In the research 2 systems were selected: MongoDB and

PostgreSQL. MongoDB has been tested in a MSc thesis

project (De Vreede 2016). The testing of PostgreSQL is

described in a technical report (Meijers et al. 2016).

3.1 Initial test – Storage size requirements

As AIS messages are received frequently for many vessels,

the total data volume is significant. Per week more than 80

million messages are received (leading to over 1.5GB of raw

message data per week). Our initial test therefore focused on

the storage requirements. A limited test set was loaded into

MongoDB and PostgreSQL.

Table 1: Storage size requirements for storing AIS messages

As can be concluded from Table 1, both PostgreSQL and

MongoDB offer compact storage. However, the JSON based

types in PostgreSQL require quite some storage, and our

conclusion is that this data type is not suited for the use case

of archiving unpacked AIS messages.

3.2 Indexing the data model based on the bit

vector type in PostgreSQL

Indexing will also require storage space. We defined

database functions to access the parameters of the AIS

messages (stored as bit vector). Figure 4 shows an example

function for decoding the MMSI. We defined 4 functional

indexes on the table (see Table 2 for size).

Figure 4: A PL/PGSQL function for decoding the MMSI

number (vessel identification)

Table 2: Functional indexes and their size

Table 3: Comparing bitvector storage together with the four

indexes against raw file storage

Table 3 provides insights in the amount of space used for

the bit vector data type, including indexes. Compared to the

raw tab separated text file storage, 4 times more space is

consumed.

3.3 Querying the data model

For a complete range of use cases two queries are a starting

point:

1. Find the last known position of a vessel.

2. Give the trajectory of a vessel (ordered by timestamp and

subsequently connected with straight segments), see

Appendix A.

The results of these queries can be visualized by using

QGIS, an off-the-shelf GIS package. With the limited test data

set we experienced real time query performance. Figure 5

Key Value Binary representation
Message Type 1 0000012 (= 1)
Repeat Indicator 0 002 (= 0)
MMSI 245207000 001…00002

(= 245207000)
… … …

The raw AIS data (6 bit ASCII encoded):
13an?n002APDdH0Mb85;8'sn06sd

As bit vector of 0’s and 1’s:

000001 00 001110100111011000111111011000 000...100

Some decoded parameters:

Solution Storage data type Size (MB) Factor to File

File Raw AIS message + time
stamp
(tab separated)

27 –

MongoDB JSON (WiredTiger) 58 2.1x

PostgreSQL JSON 213 7.9x

PostgreSQL JSONB 273 10.1x

PostgreSQL Varchar 35 1.3x

PostgreSQL Bit vector 35 1.3x

-- get the MMSI number as integer

CREATE OR REPLACE FUNCTION ais_mmsi

(payload bit varying) RETURNS integer AS $$

BEGIN

RETURN

substring(payload

from 9 for 30)::integer;

END;

$$ LANGUAGE plpgsql IMMUTABLE;

Index Type Column / Function Size
(MB)

Share
(%)

MMSI B-Tree ais_mmsi(payload) 11 19

Type B-Tree ais_type(payload) 11 19

Time stamp B-Tree ts 11 19

Geometry R-Tree ais_point(payload) 25 43

58 100

Size Factor

Table with bit vector 35 MB 38%

Indexes 58 MB 62%

Total 93 MB 3.5x

AGILE 2017 – Wageningen, May 9-12, 2017

shows that we count how many vessels crossed a line by

extending the basic queries (the trajectory query is used).

Figure 5: Selecting tracks overlapping a line for counting

how many vessels crossed. For performing this analysis, the

trajectory query (Appendix A) is used as a building block.

4 Discussion

MongoDB offers compact data storage for AIS messages. The

data model developed for PostgreSQL is a compact and viable

option. Based on the bit vector data type a factor 4 more

storage space than raw file storage is used. It allows efficient

spatial queries (as messages are indexed).

5 Future work

In this study, we have dealt with AIS data that was already

collected and then bulk loaded. However, archiving real-time

data is different. An option is to structure the data in 2 tables:

A heap (with not-yet-indexed recent data) and an indexed and

clustered historic archive. How often to perform re-

organization of the heap table into the historic archive?

Acknowledgements

This work has been carried out in the framework of the

‘RWS-TUD Raamovereenkomst betreffende Samenwerking

en Kennisuitwisseling op gebied van Ruimtelijke

Informatievoorziening’ (Reference 31103836).

References

Meijers, M, van Oosterom, P, Quak, W 2016, Management of

AIS messages in a Geo-DBMS, GISt Report No. 71, in

opdracht van de Raamovereenkomst Rijkswaterstaat - TU

Delft, Technical report, Delft University of Technology, Delft,

pp. 33, 2016.

Raymond, ES 2016, AIVDM/AIVDO protocol decoding.

Available from: catb.org [1 February 2016]

de Vreede, I 2016, Managing historic Automatic Identification

System data by using a proper Database Management System

structure. Master’s thesis, TU Delft.

Appendix A: Trajectory query

SELECT * FROM

(

-- step 1. Get the data of the vessels,

-- ordered by MMSI and then by timestamp

WITH ais_data AS

(

SELECT ts, ais_mmsi(payload) AS mmsi, ais_point(payload) AS

geometry

FROM

ais_bits_rws_tiny

WHERE

ais_type(payload) in (1,2,3) AND ais_mmsi(payload) = [MMSI]

AND

-- between certain period

ts > ’[TMIN]’ AND ts < ’[TMAX]’

-- exclude records with (91,181) readings

AND

ais_point(payload) && st_setsrid(’BOX(-90 -180, 90

180)’::box2d, 4326)

ORDER BY

mmsi, ts

)

-- step 3. Calculate distance + speed

SELECT

mmsi, start_ts, end_ts, happened_ts, duration_secs,

dist, CASE WHEN duration_secs <> 0 THEN dist / duration_secs

ELSE NULL END AS speed, geo_segment

FROM

(

-- step 2. Find next point in trajectory

-- and make line segment for every

-- part of the trajectory

SELECT

mmsi, start_ts, end_ts, tstzrange(start_ts,end_ts) AS

happened_ts, extract(epoch from (end_ts - start_ts)) AS

duration_secs, st_distance(st_transform(geom1, 28992),

st_transform(geom2, 28992)) AS dist,

st_makeline(geom1,geom2)::geometry(LineString, 4326) AS

geo_segment

FROM (

SELECT

mmsi, ts AS start_ts, lead(ts) OVER w AS end_ts,

geometry AS geom1, lead(geometry) OVER w AS geom2

FROM

ais_data

WINDOW w AS (PARTITION BY mmsi ORDER BY ts)

) AS q

) AS qq

) AS r;

