Why landslide susceptibility maps should change over time

Jalal Samia¹, Arnaud Temme², Arnold Bregt¹, Jakob Wallinga¹, Fausto Guzzetti³, Francesca Ardizzone³, Mauro Rossi³ ¹Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands ²Kansas State University, 950 N17th Street, Manhattan, KS, 66506, United States ³CNR-IRPI, via Madonna Alta 126, I-06128 Perugia, Italy

Istituto di Ricerca per la Protezione Idrogeologica

Objective:

Quantifying the effect of history of landslides in susceptibility modelling

Time-variant landslide susceptibility modelling (Samia et al, 2016, Landslides):

Susceptibility_{s,t} = $f(conditioning attributes_s, previous landslides_{s,t})$

Study area, data and inspiration

Figure 5. Histograms of geometric and topographic attributes of landslides with (red) and without (blue) follow-up landslides.

Mean of size, roundness, TWI, absolute profile curvature,

ANOVA

relative slope position and vertical distance to channel network between landslides with and with out follow-up landslides are significantly different

Figure 1. Multi-temporal landslide inventory of Collazzone study area in central of Italy

Figure 2. Inspiration of the work: many overlapping landslides

Figure 3. Spatial association between landslides

Set of variables	Variables available for logistic regression	AUC calibration	AUC validation
Geometry	2	0.60 ± 0.01	0.55 ± 0.03
Topography	12	0.57 ± 0.03	0.56 ± 0.05
Geometry + topography	14	0.64 ± 0.02	0.58 ± 0.04

Table 1. Logistic regression models implemented to predict occurrence of follow-up landslides

Conclusion

Results

Figure 6. Example: Time-variant landslide susceptibility modelling reflected as clustering of landslides after a first landslide happens within a time scale of about 10 years.

Landslides clearly depend on the history of landsliding, therefore dynamic landslide susceptibility maps are necessary

Elapsed time since first landslide (t) **Figure 4.** Temporal behaviour of landslide path dependency with an exponential decay

Acknowledgements

This work is part of JS PhD project at Wageningen university and research, Financed by ministry of science, research and technology of Iran

Wageningen University & Research Laboratory of Geo-information Science and Remote Sensing, Droevendalsesteeg 3, 6708 PB Wageningen Contact: jalal.samia@wur.nl + 31 (0)317 419000

Holomonia fraction p(t) = $\rho_a \exp^{(b*t)} + \rho_0$ $\rho(t) = \rho_a \exp^{(b*t)} + \rho_0$ $\rho(t) = \rho_a \exp^{(b*t)} + \rho_0$

Landslide susceptibility temporarily increases by a factor of 15 following a landslide, and then decreases gradually over time