

1 Introduction

 The modelling of public transit availability with the General

Transit Feed Specification (GTFS) [1] has facilitated a wide

range of different software tools in recent years. Cities and

authorities make ‘feeds’ of transit information available freely

online, promoting their own public services but also

supporting the development by third parties of different apps.

These include apps for journey planning [2] or travel time

analysis [3]. However, though it is based on a simple, flat-file

structure, the collection and validation of GTFS feeds has

some limitations. Firstly, the optional route ‘shapes’ showing

the geography of the data are costly to produce and update.

Secondly, and more importantly, feeds are not well suited to

the analysis of transit as it relates to the wider road graph. A

feed represents a separate graph of possible trips and

stoppings which do not associate bus or tram services with the

exact edges in the road graph they may use.

In this work we propose a solution to estimate the topology

of the GTFS feed as composed of edges from the underlying

road graph. Building GTFS using roads in this way has two

benefits: it permits fine-grained analysis of transit provision at

a graph-edge (street link) level of granularity, and it can

exploit an existing, externally managed map dataset from

which to draw road network topology. Analysis possible using

topology includes frequency calculations for individual street

links as shown in Figure 1, or viewing of congested sections

of a specific planned route. These queries are not feasible

using the stopping or shape data in GTFS alone, as the exact

edges used by each route are not available.

For our work, we retrieve the road graph from

OpenStreetMap and test a novel approach to matching transit

trips against this dataset using a street routing engine. This

process builds upon existing work in the field of map-

matching [4,6,7]. A simple tool uses routing to batch-process

the stoppings in a whole GTFS feed. It then presents route

alignments for a user to validate through a UI – after which

the detailed topology of the transit supply can be used for

more sophisticated analysis of routes and their constituent

edges.

Estimating and editing transit topology over the road graph

using supply data feeds

Mark Dimond

Integrated Transport

Planning Ltd.

Nottingham, UK

dimond@itpworld.net

Neil Taylor

Integrated Transport

Planning Ltd.

Nottingham, UK

taylor@itpworld.net

Robert Houghton

University of

Nottingham

Nottingham, UK

robert.houghton@

nottingham.ac.uk

Abstract

Models of citywide public transit infrastructure work best when they have not just geographic data, but the underlying topology: how

individual transit routes relate to each other and the road network. Having such information allows strategic analysis of transit supply

and demand at varying scales. This is important in understanding which road segments are heavily utilised by multiple routes, or what

each segment along a particular route looks like under different traffic conditions. However, capturing a topological model can be time

consuming. Furthermore, it may not contain the full road network (just transit routes), or it may require frequent updates as information

about new routes is added. We describe the use of simple map matching to link transit supply data (in the industry-standard General

Transit Feed Specification format) to a segmented street network model based upon OpenStreetMap. This linking uses a routing engine,

iterating over stops in a GTFS file to estimate the roads used by particular stoppings of buses. A novel web interface then allows

correction of the selected road segments by a knowledgeable user. The final result is a 'road-aligned' transit supply database which the

user can query for either route or road network intelligence.

Keywords: map matching, topology, public transport, GTFS

Figure 1: Road network topology and bus routes

AGILE 2016 – Helsinki, June 14-17, 2016

2 Background

 Attempting to estimate from GTFS the road network used by

a particular transit service is not trivial. A GTFS ‘feed’

consists of trips described by multiple stops, each of which

includes a set of coordinates. The problem is therefore to

detect the street graph edges used between successive pairs of

stops, but intuitively one can see that almost any number of

edges might be correct, from one (stops are on the same edge)

to hundreds (a long-distance bus route).

 This can be considered a form of map matching, a very well

studied problem in the field of geographic information. Map

matching attempts to identify the sections of a street graph

that represent the true state of noisy position observations [4].

In existing literature, these positions often come from GPS or

other satellite positioning, but we argue that the point features

of GTFS stops form a very similar basis for map matching.

 A variety of different algorithms have been demonstrated

and refined over a period of decades. Much of the earlier work

has been extensively documented by Quddus et al (e.g. [4]).

In a prominent project, [5] report a hidden Markov Model to

be particularly effective at matching noisy GPS points to an

existing map, using probabilistic modelling of the transitions

between graph edges to optimise the selection of each

successive edge. Their method, which uses both street routing

distance and straight-line distance as heuristics to aid this

selection, applies the Viterbi algorithm to compute the most

likely sequences of graph edges for a particular input. The

authors report good performance even at sample rates of 30

seconds or less [5, p7]. More recently, [6] have produced both

a substantively updated review and an algorithm that

hybridises the local- and global-search techniques of other

attempts. These sophisticated techniques are typically based

around calculating the minimal Fréchet distance [10] between

the sequence of observations and the road network (in some

cases using a free space graph between the two sets to select a

global minimum [6, p435]).

 The remainder of this paper describes a method for map

matching based upon street routing. To our knowledge, a

comparable approach has been tested only once in existing

literature: [7] report reasonable results using routing after

pruning GPS logs of higher sample rates results to only the

most significant points. In [11], a GTFS feed is matched

against a road network using a breadth-first edge evaluation

algorithm. The contribution of our work above this is twofold:

1. we test an off-the-shelf routing algorithm, which requires

none of the parameter-setting required of the solution in

[11] and is usable with different transit modes; and

2. we present an interface for a user to view and correct the

topology immediately after it is estimated.

 We note the intuition that the stops of a trip in a GTFS feed

are similar to having very low sample-rate positioning logs

[11, p8], and hence argue that a routing algorithm is most

appropriate in order to maximise correct edge selection

between stop points. Whilst some considerable work has been

done to improve map matching from very sparse data [8,9],

we suggest that the 71% accuracy achieved for a 1.5 minute

sampling rate [9, p9] can be improved upon. There is the

further advantage that a routing algorithm can very easily be

used over different graphs for various modes of on- and off-

road transit, such as trolleybuses, trams, and rail.

3 Routing-Based Map Matching

This section describes our workflow for deriving an estimated

topology from a General Transit Feed Specification (GTFS)

file. A brief description of the feed format is given, before

summarising our workflow and implementation

considerations.

3.1 GTFS

 Developed by Google and the city of Portland, USA [1], the

General Transit Feed Specification has become a de-facto

standard for description of public transport (transit) data. A

‘feed’ file captured by an operator or authority contains details

of transit supply at three levels:

• route, describing meta-information such as name, transit

mode, description, and operator of a particular service;

• trip, which captures different directions and variations of

a service over a given route;

• and stop time, which captures the timings and stoppings

of a trip at known stop locations. [1]

 The locations and meta-information of each stop are

captured separately for use in different trips. A GTFS file may

optionally include data regarding the shapes (geometry) of

trips between stop times, captured as a coordinate linestring,

to aid visualisation. This is not considered in our present

workflow, as these shapes may be of varying levels of data

quality (or completely missing). Using them to improve map

matching is a promising avenue for future improvements to

the system described below. However, note that using shape

data would likely require a different form of map-matching to

that examined below, as they are likely to contain

significantly more vertices from which to match.

3.2 Overall Architecture

 The road network graph used in our workflow is derived

from OpenStreetMap (OSM), which provides reasonable or

good topological road data in the cities for which we have

tested the solution, and has the added benefit that it can be

updated by users. Existing studies have shown that in Europe,

OSM contains high quality road network data [14].

Nevertheless it is also possible to use our approach with other

road databases.

 The graph is cut from a citywide OSM extract using the

OSMSplit tool, part of the OpenTripPlanner project [2]. The

resulting geodatabase can then be used by a route planning

algorithm to estimate routes between stops. This process

typically takes at most several minutes for a whole GTFS

feed, though it is run as a batch process in the first iteration.

For the geodatabase we use PostGIS because it supports the

pgRouting extension (see http://pgrouting.org/). Using this

AGILE 2016 – Helsinki, June 14-17, 2016

extension we are able to calculate the shortest route using

Dijkstra’s algorithm [12], which is proposed as the route

alignment between stops. Dijkstra is chosen here for

simplicity, though other routing algorithms such as A* are

supported by pgRouting. Figure 2 shows the architecture of

our system for trip alignment.

Figure 2: Architecture of map matching

3.3 Review Interface

Once completed, the route alignment results can be inspected

through a web application by a knowledgeable user.

Adjustments to the detected road alignments can be made

where necessary using an intuitive click-select interface which

allows the user to capture all of the road segments for a

particular trip’s ‘stopping’ (stop time). Selecting and editing

the route’s segments is achieved through asynchronous calls

to a database API from the web interface. (This method is

used as preliminary development showed that loading all

possible street segments for a city in a web browser was

infeasible using current browser technology.) Figure 3 shows

the interface with an incorrect road alignment prior to

correction; the user simply clicks a stop location, and then

clicks to toggle the correct street edges in the appropriate

sequence. If available, data from the shapes.txt feed file is

displayed as a guide for alignment – shown here as the purple,

thinner line.

 Having checked the detected route alignments against the

road network, the complete feed can then be re-exported to

valid GTFS. However, included in the completed feed are two

new data types:

• alignments, which capture road segments with unique

identifiers against each stop time in the feed; and

• segments, which capture the geography of the edges in

the road graph and the original OSM ‘way’ identifiers

from which they are derived.

 The former file encodes the topology of the road network,

allowing analysis of the road segments which are used by

different services. Using the PostGIS geodatabase also

permits export to different formats that support topology, such

as the compact and flexible TopoJSON format [13].

3.4 Challenges

One of the main advantages of using a routing framework to

estimate topology is the straightforward capture of traffic

rules, directionality, turn restrictions etc. This ensures that the

proposed route alignments selected for a GTFS trip form a

connected route and hence are more likely to be correct.

Nevertheless, in certain instances the wrong lane of a multi-

lane carriageway may be selected by the routing algorithm,

and must be corrected by the user. Validity of the suggested

route for the trip is a related issue: the transit mode used must

be able to navigate all suggested segments, so trams cannot be

routed via bus lanes and buses cannot use subways! For our

prototype application, only roads and bus lanes are included,

meaning only bus-based trips are currently tested.

Figure 3: Editing interface with an incorrect alignment shown. (The correct route is shown by the thinner line)

AGILE 2016 – Helsinki, June 14-17, 2016

4 Results

 In this section, we present the results of attempting road

alignment using the freely available Mexico City GTFS feed

(available for download at http://transitfeeds.com/), and report

statistics regarding its performance. Not all routes are

perfectly matched: poor quality stop data, incomplete OSM,

and unusual real-world behaviour of the transit system all

mean that the road alignments selected by the routing

algorithm are not perfect w.r.t. the correct behaviour of the

trip in question.

 To evaluate the performance of the routing-based map

matching, the correct segments for 34 GTFS routes,

containing 1,237 stoppings, were selected from the

OpenStreetMap graph using a desktop GIS. This represents

approximately 2% of the entire feed’s trips, chosen at random

amongst agencies that use buses. The batch route linking

process was then applied and compared to this ground truth.

For 82.9% of the stoppings, the exact correct sequence of

edges was selected by the algorithm (with no overestimation).

Figure 4 gives further indication of the algorithm’s

performance at selecting edges: points that are not on the

‘correctness’ line represent estimated alignments that are

either too long or short relative to the correct route for a

stopping. One observes that for shorter distances between stop

times (250 metres and less), the routing algorithm is more

likely to select a route of the correct length, whilst for longer

stop-to-stop journeys, more mistakes are made. Note that an

estimated route being the correct length does not necessarily

mean it is correct: for example if a route travels between

opposite corners of a city block, it can travel either west

followed by south, or south followed by west, and both routes

will be almost identical in length. Nevertheless, distance

correctness is used as an indicator.

 The figure shows a number of estimated routes with zero

distance (zero on the vertical axis). We applied a heuristic to

discard incorrect routings: if the best available route found

between two stops is greater than three times the straight-line

distance, the estimation is not recorded, as it is assumed to be

incorrect. The user can then select the actual route taken using

the interface without first having to remove incorrect

alignments.

 The quality of stop data within the GTFS feed causes minor

problems because, in our experience, some transit authorities

record their stop data less precisely than others. The majority

of GTFS feeds contain one stop for each direction of a trip, on

the appropriate side of the road. However in the case of one

feed for which we tested the linking process, one recorded

stop was used to denote an approximate stopping point for

two directions of travel (typically ‘outward’ and ‘return’). In

cases where the road in question has multiple carriageways,

this causes great difficulty as the routing algorithm could not

account for a ‘return’ trip along the outbound carriageway

(see Figure 5). In future work we will address this by making

it simple to add corresponding stops in the application

interface.

5 Conclusions

This work has presented two contributions: a method for

inferring transit network topology from commonly available

data feeds; and a UI with which a knowledgeable user can edit

these inferences to ensure the resulting model is fully correct.

Our results show good performance using routing between

trip stops as a form of map matching. The manual correction

process is a minor drawback, but this will be reduced as OSM

and GTFS data quality improves. Data quality of stop

locations in particular is an issue, and in cases where one stop

is used to represent journeys on opposite sides of a multi-

carriageway road, the correct routing cannot be determined

automatically.

 In future this will be mitigated by making it simple to add

GTFS stop locations in the UI, at which point the inference

Figure 4: Map matching performance by

ground truth distance

Figure 5: Stop pairs perform better than single stops.

AGILE 2016 – Helsinki, June 14-17, 2016

process can be re-run. Further work will allow extraction of

separate graphs for different transit modes, allowing inference

for trams, subways and rail routes using data already in OSM.

Finally, the ability to monitor a given city’s OpenStreetMap

data for changes will allow the user to ensure the transit

topology is updated when necessary.

Acknowledgement

This work was co-funded by Innovate UK, ESRC and

EPSRC, through a Knowledge Transfer Partnership (no.

9472).

References

[1] General Transit Feed Specification Developer

Reference,

https://developers.google.com/transit/gtfs/ Google

[2] Hillsman, E., and Barbeau, S. (2011) Enabling

Cost-Effective Multimodal Trip Planners through

Open Transit Data, National Center for Transit

Research Report.

[3] Transport Analyst

http://conveyal.com/projects/analyst/ Conveyal

[4] Quddus, M., Ochieng, W., and Noland, R. (2007)

Current map-matching algorithms for transport

applications: State of the art and future research

directions. Transportation Research Part C.

[5] Newson, P. and Krumm, J. (2009) Hidden Markov

map matching through noise and sparseness ACM

SIGSPATIAL 2009

[6] Wei, H., Wang, Y., Forman, G., and Zhu, Y. (2013)

Map matching: Comparison of approaches using

sparse and noisy data ACM SIGSPATIAL 2013

[7] Griffin, T., Huang, Y., and Seals, S. (2011) Routing-

based map matching for extracting routes from GPS

trajectories. COM.Geo 2011

[8] Lou, Y, et al (2009) Map Matching for Low-

Sampling-Rate GPS Trajectories, ACM

SIGSPATIAL 2009

[9] Yuan, J., et al (2010) An Interactive-Voting Based

Map Matching Algorithm, ACM Mobile Data

Management 2010

[10] Alt, H. and Godau, M. (1995) Computing the

Fréchet distance between two polygonal curves,

International Journal of Computational Geometry

and Applications 5.

[11] Perrine, K., Khani, A., and Ruiz-Juri, N. (2015) A

Map-Matching Algorithm for Applications in

Multimodal Transportation Network Modeling,

Transportation Research Board 94th Annual

Meeting, Jan. 2015, Washington DC

[12] Dijkstra, E.W (1959) A note on two problems in

connexion with graphs, Numerische Mathematik 1

[13] Bostock, M., (2013) How to infer topology

http://bost.ocks.org/mike/topology/

[14] Ludwig, I., Voss, A., and Krause-Traudes, M.

(2011) A Comparison of the Street Networks of

Navteq and OSM in Germany, Springer Lecture

Notes in Geoinformation and Cartography.

