
 

 

1 Introduction 

  The modelling of public transit availability with the General 

Transit Feed Specification (GTFS) [1] has facilitated a wide 

range of different software tools in recent years. Cities and 

authorities make ‘feeds’ of transit information available freely 

online, promoting their own public services but also 

supporting the development by third parties of different apps. 

These include apps for journey planning [2] or travel time 

analysis [3]. However, though it is based on a simple, flat-file 

structure, the collection and validation of GTFS feeds has 

some limitations. Firstly, the optional route ‘shapes’ showing 

the geography of the data are costly to produce and update. 

Secondly, and more importantly, feeds are not well suited to 

the analysis of transit as it relates to the wider road graph. A 

feed represents a separate graph of possible trips and 

stoppings which do not associate bus or tram services with the 

exact edges in the road graph they may use.  

 

In this work we propose a solution to estimate the topology 

of the GTFS feed as composed of edges from the underlying 

road graph. Building GTFS using roads in this way has two 

benefits: it permits fine-grained analysis of transit provision at 

a graph-edge (street link) level of granularity, and it can 

exploit an existing, externally managed map dataset from 

which to draw road network topology. Analysis possible using 

topology includes frequency calculations for individual street 

links as shown in Figure 1, or viewing of congested sections 

of a specific planned route. These queries are not feasible 

using the stopping or shape data in GTFS alone, as the exact 

edges used by each route are not available. 

 

For our work, we retrieve the road graph from 

OpenStreetMap and test a novel approach to matching transit 

trips against this dataset using a street routing engine. This 

process builds upon existing work in the field of map-

matching [4,6,7]. A simple tool uses routing to batch-process 

the stoppings in a whole GTFS feed. It then presents route 

alignments for a user to validate through a UI – after which 

the detailed topology of the transit supply can be used for 

more sophisticated analysis of routes and their constituent 

edges. 
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Abstract 

Models of citywide public transit infrastructure work best when they have not just geographic data, but the underlying topology: how 

individual transit routes relate to each other and the road network.  Having such information allows strategic analysis of transit supply 

and demand at varying scales. This is important in understanding which road segments are heavily utilised by multiple routes, or what 

each segment along a particular route looks like under different traffic conditions.  However, capturing a topological model can be time 

consuming. Furthermore, it may not contain the full road network (just transit routes), or it may require frequent updates as information 

about new routes is added. We describe the use of simple map matching to link transit supply data (in the industry-standard General 

Transit Feed Specification format) to a segmented street network model based upon OpenStreetMap. This linking uses a routing engine, 

iterating over stops in a GTFS file to estimate the roads used by particular stoppings of buses. A novel web interface then allows 

correction of the selected road segments by a knowledgeable user. The final result is a 'road-aligned' transit supply database which the 

user can query for either route or road network intelligence. 
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Figure 1: Road network topology and bus routes 
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2 Background 

  Attempting to estimate from GTFS the road network used by 

a particular transit service is not trivial. A GTFS ‘feed’ 

consists of trips described by multiple stops, each of which 

includes a set of coordinates. The problem is therefore to 

detect the street graph edges used between successive pairs of 

stops, but intuitively one can see that almost any number of 

edges might be correct, from one (stops are on the same edge) 

to hundreds (a long-distance bus route).  

 

  This can be considered a form of map matching, a very well 

studied problem in the field of geographic information. Map 

matching attempts to identify the sections of a street graph 

that represent the true state of noisy position observations [4]. 

In existing literature, these positions often come from GPS or 

other satellite positioning, but we argue that the point features 

of GTFS stops form a very similar basis for map matching.  

 

  A variety of different algorithms have been demonstrated 

and refined over a period of decades. Much of the earlier work 

has been extensively documented by Quddus et al (e.g. [4]). 

In a prominent project, [5] report a hidden Markov Model to 

be particularly effective at matching noisy GPS points to an 

existing map, using probabilistic modelling of the transitions 

between graph edges to optimise the selection of each 

successive edge. Their method, which uses both street routing 

distance and straight-line distance as heuristics to aid this 

selection, applies the Viterbi algorithm to compute the most 

likely sequences of graph edges for a particular input. The 

authors report good performance even at sample rates of 30 

seconds or less [5, p7]. More recently, [6] have produced both 

a substantively updated review and an algorithm that 

hybridises the local- and global-search techniques of other 

attempts. These sophisticated techniques are typically based 

around calculating the minimal Fréchet distance [10] between 

the sequence of observations and the road network (in some 

cases using a free space graph between the two sets to select a 

global minimum [6, p435]). 

 

  The remainder of this paper describes a method for map 

matching based upon street routing. To our knowledge, a 

comparable approach has been tested only once in existing 

literature: [7] report reasonable results using routing after 

pruning GPS logs of higher sample rates results to only the 

most significant points. In [11], a GTFS feed is matched 

against a road network using a breadth-first edge evaluation 

algorithm. The contribution of our work above this is twofold:  

1. we test an off-the-shelf routing algorithm, which requires 

none of the parameter-setting required of the solution in 

[11] and is usable with different transit modes; and 

2. we present an interface for a user to view and correct the 

topology immediately after it is estimated.   

  We note the intuition that the stops of a trip in a GTFS feed 

are similar to having very low sample-rate positioning logs 

[11, p8], and hence argue that a routing algorithm is most 

appropriate in order to maximise correct edge selection 

between stop points. Whilst some considerable work has been 

done to improve map matching from very sparse data [8,9], 

we suggest that the 71% accuracy achieved for a 1.5 minute 

sampling rate [9, p9] can be improved upon. There is the 

further advantage that a routing algorithm can very easily be 

used over different graphs for various modes of on- and off- 

road transit, such as trolleybuses, trams, and rail. 

 

 

3 Routing-Based Map Matching 

This section describes our workflow for deriving an estimated 

topology from a General Transit Feed Specification (GTFS) 

file. A brief description of the feed format is given, before 

summarising our workflow and implementation 

considerations.  

 

 

3.1 GTFS 

  Developed by Google and the city of Portland, USA [1], the 

General Transit Feed Specification has become a de-facto 

standard for description of public transport (transit) data. A 

‘feed’ file captured by an operator or authority contains details 

of transit supply at three levels:  

• route, describing meta-information such as name, transit 

mode, description, and operator of a particular service; 

• trip, which captures different directions and variations of 

a service over a given route; 

• and stop time, which captures the timings and stoppings 

of a trip at known stop locations. [1] 

  The locations and meta-information of each stop are 

captured separately for use in different trips. A GTFS file may 

optionally include data regarding the shapes (geometry) of 

trips between stop times, captured as a coordinate linestring, 

to aid visualisation. This is not considered in our present 

workflow, as these shapes may be of varying levels of data 

quality (or completely missing). Using them to improve map 

matching is a promising avenue for future improvements to 

the system described below. However, note that using shape 

data would likely require a different form of map-matching to 

that examined below, as they are likely to contain 

significantly more vertices from which to match.  

 

 

3.2 Overall Architecture 

  The road network graph used in our workflow is derived 

from OpenStreetMap (OSM), which provides reasonable or 

good topological road data in the cities for which we have 

tested the solution, and has the added benefit that it can be 

updated by users. Existing studies have shown that in Europe, 

OSM contains high quality road network data [14]. 

Nevertheless it is also possible to use our approach with other 

road databases.  

 

  The graph is cut from a citywide OSM extract using the 

OSMSplit tool, part of the OpenTripPlanner project [2]. The 

resulting geodatabase can then be used by a route planning 

algorithm to estimate routes between stops. This process 

typically takes at most several minutes for a whole GTFS 

feed, though it is run as a batch process in the first iteration. 

For the geodatabase we use PostGIS because it supports the 

pgRouting extension (see http://pgrouting.org/). Using this 
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extension we are able to calculate the shortest route using 

Dijkstra’s algorithm [12], which is proposed as the route 

alignment between stops. Dijkstra is chosen here for 

simplicity, though other routing algorithms such as A* are 

supported by pgRouting. Figure 2 shows the architecture of 

our system for trip alignment. 

 

Figure 2: Architecture of map matching 

 
 

 

3.3 Review Interface 

Once completed, the route alignment results can be inspected 

through a web application by a knowledgeable user. 

Adjustments to the detected road alignments can be made 

where necessary using an intuitive click-select interface which 

allows the user to capture all of the road segments for a 

particular trip’s ‘stopping’ (stop time). Selecting and editing 

the route’s segments is achieved through asynchronous calls 

to a database API from the web interface. (This method is 

used as preliminary development showed that loading all 

possible street segments for a city in a web browser was 

infeasible using current browser technology.) Figure 3 shows 

the interface with an incorrect road alignment prior to 

correction; the user simply clicks a stop location, and then 

clicks to toggle the correct street edges in the appropriate 

sequence. If available, data from the shapes.txt feed file is 

displayed as a guide for alignment – shown here as the purple, 

thinner line.   

 

  Having checked the detected route alignments against the 

road network, the complete feed can then be re-exported to 

valid GTFS. However, included in the completed feed are two 

new data types: 

• alignments, which capture road segments with unique 

identifiers against each stop time in the feed; and 

• segments, which capture the geography of the edges in 

the road graph and the original OSM ‘way’ identifiers 

from which they are derived. 

 

  The former file encodes the topology of the road network, 

allowing analysis of the road segments which are used by 

different services. Using the PostGIS geodatabase also 

permits export to different formats that support topology, such 

as the compact and flexible TopoJSON format [13]. 

 

 

3.4 Challenges 

One of the main advantages of using a routing framework to 

estimate topology is the straightforward capture of traffic 

rules, directionality, turn restrictions etc. This ensures that the 

proposed route alignments selected for a GTFS trip form a 

connected route and hence are more likely to be correct. 

Nevertheless, in certain instances the wrong lane of a multi-

lane carriageway may be selected by the routing algorithm, 

and must be corrected by the user. Validity of the suggested 

route for the trip is a related issue: the transit mode used must 

be able to navigate all suggested segments, so trams cannot be 

routed via bus lanes and buses cannot use subways! For our 

prototype application, only roads and bus lanes are included, 

meaning only bus-based trips are currently tested. 

 

 

 

Figure 3: Editing interface with an incorrect alignment shown. (The correct route is shown by the thinner line) 
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4 Results 

 In this section, we present the results of attempting road 

alignment using the freely available Mexico City GTFS feed 

(available for download at http://transitfeeds.com/), and report 

statistics regarding its performance. Not all routes are 

perfectly matched: poor quality stop data, incomplete OSM, 

and unusual real-world behaviour of the transit system all 

mean that the road alignments selected by the routing 

algorithm are not perfect w.r.t. the correct behaviour of the 

trip in question.  

 

  To evaluate the performance of the routing-based map 

matching, the correct segments for 34 GTFS routes, 

containing 1,237 stoppings, were selected from the 

OpenStreetMap graph using a desktop GIS. This represents 

approximately 2% of the entire feed’s trips, chosen at random 

amongst agencies that use buses.  The batch route linking 

process was then applied and compared to this ground truth. 

For 82.9% of the stoppings, the exact correct sequence of 

edges was selected by the algorithm (with no overestimation). 

Figure 4 gives further indication of the algorithm’s 

performance at selecting edges: points that are not on the 

‘correctness’ line represent estimated alignments that are 

either too long or short relative to the correct route for a 

stopping. One observes that for shorter distances between stop 

times (250 metres and less), the routing algorithm is more 

likely to select a route of the correct length, whilst for longer 

stop-to-stop journeys, more mistakes are made. Note that an 

estimated route being the correct length does not necessarily 

mean it is correct: for example if a route travels between 

opposite corners of a city block, it can travel either west 

followed by south, or south followed by west, and both routes 

will be almost identical in length. Nevertheless, distance 

correctness is used as an indicator.  

 

  The figure shows a number of estimated routes with zero 

distance (zero on the vertical axis). We applied a heuristic to 

discard incorrect routings: if the best available route found 

between two stops is greater than three times the straight-line 

distance, the estimation is not recorded, as it is assumed to be 

incorrect. The user can then select the actual route taken using 

the interface without first having to remove incorrect 

alignments.  

 

  The quality of stop data within the GTFS feed causes minor 

problems because, in our experience, some transit authorities 

record their stop data less precisely than others. The majority 

of GTFS feeds contain one stop for each direction of a trip, on 

the appropriate side of the road. However in the case of one 

feed for which we tested the linking process, one recorded 

stop was used to denote an approximate stopping point for 

two directions of travel (typically ‘outward’ and ‘return’). In 

cases where the road in question has multiple carriageways, 

this causes great difficulty as the routing algorithm could not 

account for a ‘return’ trip along the outbound carriageway 

(see Figure 5). In future work we will address this by making 

it simple to add corresponding stops in the application 

interface.  

 

 

5 Conclusions 

This work has presented two contributions: a method for 

inferring transit network topology from commonly available 

data feeds; and a UI with which a knowledgeable user can edit 

these inferences to ensure the resulting model is fully correct. 

Our results show good performance using routing between 

trip stops as a form of map matching. The manual correction 

process is a minor drawback, but this will be reduced as OSM 

and GTFS data quality improves. Data quality of stop 

locations in particular is an issue, and in cases where one stop 

is used to represent journeys on opposite sides of a multi-

carriageway road, the correct routing cannot be determined 

automatically.  

 

  In future this will be mitigated by making it simple to add 

GTFS stop locations in the UI, at which point the inference 

Figure 4: Map matching performance by  

ground truth distance 

 

Figure 5: Stop pairs perform better than single stops. 
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process can be re-run. Further work will allow extraction of 

separate graphs for different transit modes, allowing inference 

for trams, subways and rail routes using data already in OSM. 

Finally, the ability to monitor a given city’s OpenStreetMap 

data for changes will allow the user to ensure the transit 

topology is updated when necessary.  
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