
1 Introduction 

For managing natural resources properly, detailed and up-to-

date information is required. Vegetation plays an important role 

in urban planning, hindering erosion in riverine environments, 

and providing various ecosystem services from managed and 

natural forests. Laser scanning has already operationally been 

applied in mapping forest resources in Nordic countries. In 

addition, there is an interest in research in applying airborne 

laser scanning (ALS) in change detection e.g. [7, 12, 16). In 

riverine environments, mobile laser scanning (MLS) has been 

studied in detecting changes of river banks e.g. [4, 15]. In 

green, urban environments, changes in individual tree-level is 

necessary, especially related to growth and required 

management activities whereas knowledge on vegetation 

changes in riverine environment can improve flood risk 

modelling. Wind has been the main cause for losses in forest 

yield values, therefore more understanding from drivers of 

wind damage disturbance is needed. 

This paper presents development of methods for urban tree-

attribute update, change detection in riverine environment, and 

identifying areas vulnerable to wind-induced damage with data 

sets that were originally collected for other purposes (urban 

planning, modelling river dynamics, and developing nation-

wide elevation model). 

 

 

2 Materials and methods 

The study included data from tree different study areas: a 2.7 

ha in total of recreational urban park of Seurasaari in Helsinki, 

Finland, a reach of 3.5 km of Pulmanki Riveri on border of 

Norway in northern Finland, and a 173 km2 of managed boreal 

forests near Huittinen in southwest of Finland. From Seurasaari 

field reference included diameter-at-breast-height (dbh) from 

389 trees. Aerial images from Pulmanki and Huittinen were 

applied as reference data. 

ALS data were applied in detecting individual tree crowns in 

Seurasaari whereas open access ALS data were applied in 

mapping wind damage for Huittinen. Multi-temporal MLS data 

were acquired for Pulmanki in late summer of 2009, 2010, 

2011, and 2012. 

In generating digital terrain model (DTM) from ALS and 

MLS data sets, a method developed by Axelsson [1] was used. 

DTM was applied in normalizing digital surface models 

(DSMs) for Seurasaari and Huittinen, and MLS point clouds 

for Pulmanki. Sample unit for Seurasaari was individual tree 

crowns whereas a 2 m x 2 m grid was applied in Pulmanki, and 

16 m x 16 m grid for Huittinen. Metrics from ALS or MLs point 

clouds were extracted for sample units, and variables for 
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Abstract 

Airborne laser scanning (ALS) has already successfully been used for applications of detailed vegetation mapping because of its capability 
to produce accurate information on vegetation and ground surfaces simultaneously. ALS data are also collected for urban planning purposes 

whereas mobile laser scanning (MLS) has been of interest in research of river dynamics. The main objective was to investigate the applicability 

of laser scanning in applications for vegetation monitoring required in continuously changing environment. This paper presents a method for 
updating existing and producing new tree attributes in heterogeneous urban recreational forests, mapping and monitoring changes in riverine 

vegetation, and mapping areas with wind disturbance and producing a continuous probability surface of wind predisposition to identify areas 

that are most likely to experience wind damage. In the future, several organizations in Finland will acquire ALS data for various purposes 
increasing the temporal resolution of the data. Therefore, the developed applications for tree-attribute update, monitoring riverine vegetation, 

and producing model to detect areas vulnerable to wind disturbance, could increase the utilization of 3D data sets as well as increase the value 

of the data. 
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predictions were selected based on their importance 

(Seurasaari), biological relevance (Pulmanki), or statistical 

significance (Huittinen). 

 

 

2.1 Multisource single-tree inventory in updating 

urban tree attributes 

For updating urban tree attributes, a method called 

multisource single-tree inventory (MS-STI) was tested. In MS-

STI an existing tree map and ALS data were combined to avoid 

leaving trees undetected which is one of the challenges of 

techniques in individual tree detection. Terrestrial laser 

scanning (TLS) data were used in identifying trees: tree trunks 

were detected and their location was recorded manually from 

TLS point clouds. 

Tree crown segments were derived from canopy height 

model (CHM) and they were linked to TLS-based tree map. 

Metrics above 0.5 m threshold describing height distribution of 

CHM (e.g. max, min, standard deviation, height percentiles) 

were extracted for each crown segment and the most important 

metrics were selected based on non-parametric random-forest 

technique where importance is based on classification trees and 

their accuracy. The random forest was iterated by a step-wise 

looping procedure to remove the least important candidate 

variable at each iteration until there was only a single predictor 

variable. Root-mean-square errors (RMSEs) were calculated 

for each combination of predictor variables and analyzed 

before the final modeling. In addition, random forest was also 

applied in searching for nearest neighbours for estimation of 

tree attributes. Neighbours are defined based on their 

probability of ending in the same terminal node in all developed 

1200 regression trees. Estimation of dbh was based on selection 

of one to five neighbours. Accuracy of the estimations was 

assessed based on RMSE and bias. 

 

 

2.2 Area-based approach in detecting changes in 

riverine vegetation 

Visual interpretation of aerial images were used in classifying 

vegetation in Pulmanki for grid cells of 230 for testing and 212 

for training. A common woodland classification was applied in 

determining whether the vegetation class for a training and 

testing cells was bare ground (no vegetation), field layer 

(comprised of grasses, ferns, or other low growing shrubs), 

shrub layer (small trees or larger shrubs), or canopy layer 

(dominant tree canopy). 

Area-based approach is a method where statistical 

dependency between target and predictor variables are defined 

[11]. Metrics describing vegetation height and density (i.e. 

mean height, 95th percentile height, and standard deviation of 

height) were selected. Random forest was applied in predicting 

vegetation class to the entire study area. Model based on 2012 

MLS data was applied in predicting vegetation classes also for 

2009, 2010, and 2011. 

A separate testing set of 212 cells was selected to evaluate the 

accuracy of the classification for 2012 data. To assess whether 

differences in MLS data acquisition parameters affected the 

results, a random sample of unchanged cells (n = 27) was 

chosen. 

 

 

2.3 Logistic regression in mapping wind damage 

risk 

A sample of 430 cells of 16 m by 16 m were visually 

determined from aerial images as damaged (n = 196) or 

undamaged (n = 234) as a ground truth for wind damage 

mapping. Predictor variables related to topography and 

elevation were derived from DTM (e.g. mean elevation, slope, 

and aspect) whereas predictors describing height and density of 

forest canopy were derived from CHM (e.g. minimum, 

maximum, mean, and standard deviation) to be applied in 

logistic regression. Openly available tree species information 

based on multisource national forest inventory (NFI) was also 

employed. 

Logistic regression was used to develop two separate models: 

one with ALS-based predictors only (LRALS) and the other one 

including also information about tree species in addition to 

variables derived from ALS (LRALS+NFI). This way it was 

possible to see how the information about tree species affects 

the results, because different tree species have different 

tolerance on wind damage [13]. Stepwise selection procedure 

with both forward and backward elimination was applied in 

selecting the final predictor variables. The final models were 

used for developing a continuous probability surface to map 

areas with high risk for suffering of wind damage. 

 

 

3 Results and discussion 

3.1 Updating urban tree attributes 

Based on calculated relative RMSE for every metrics 

combination, the prediction accuracy was not too sensitive to 

the quantity of used metrics (the maximum difference in 

RMSE% was 8.8 percentage points).  

Although conditions were very heterogeneous in urban, 

recreational park, the results were relatively reliable: the 

relative RMSE varied between 19.9% and 22.7% including a 

relative bias from -0.4% to -2.3% with various number of 

neighbors (Table 1). Comparing other studies where individual 

trees are used as sample units is not straightforward, as many 

of the studies have been conducted in managed forests. 

However, the dbh estimates from this study are similar to the 

earlier results e.g. [6, 9, 10, 14, 17]. In addition, tree height and 

crown size were possible to estimate and they could be included 

in tree registers applied for city planning (e.g. identifying trees 

interfering lamp posts -> pruning, removing trees that are 

hazardous for citizens). 

 

Table 1. Dbh estimates based on random-forest technique 

with various numbers of neighbors.  

Number of 

neighbors 
Bias, cm Bias, % 

RMSE, 

cm 

RMSE, 

% 

1 0,01 -0,36 5,78 19,91 

2 -0,16 -0,53 6,39 21,32 

3 -0,31 -0,95 6,85 22,49 

4 -0,61 -1,72 6,85 22,45 

5 -0,84 -2,31 6,97 22,71 
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3.2 Monitoring vegetation changes 

Mean values of selected metrics (mean height, 95th percentile 

height, and standard deviation of height) were statistically 

different between four vegetation classes, in other words they 

could be applied in differencing vegetation (Figure 1). Overall 

accuracy of 72.6% was obtained with separate test set. Bare 

ground and canopy layer were classified most accurately 

(79.5% and 100.00%, respectively) whereas classification 

accuracy for field and shrub layers were lower (35.0% and 

45.2%, respectively). Random sample of unchanged cells 

confirmed that different acquisition parameters among years 

did not affect selected metrics and results obtained with data 

from 2012 can be expected to be similar for other years, as well 

as for change detection accuracy. 

ALS has been applied in mapping riverine vegetation [2, 18] 

with better classification accuracy: Farid et al. [2] reported 78% 

accuracy for classifying three age classes of riparian vegetation 

and Zlinsky et al. [18] gained overall accuracy of 82.5% for 

wetland vegetation classification. However, both of these 

studies required substantial field data whereas MLS data was 

possible to use with reference from aerial images. 

 

Figure 1: Example of vegetation maps produced for River 

Pulmanki for years 2009, 2010, 2011, and 2012. 

 
 

3.3 Wind damage risk modelling 

From sample cells with wind damage, 94.4% were dominated 

by either Scots pine or Norway spruce and those sample cells 

also had higher mean and maximum values of CHM. Therefore, 

mature conifer stands are more susceptible to wind damage. 

Mean elevation and mean value of CHM (with adjacent cells 

included) were most significant predictors (p<0.001) for 

LRALS. In addition to these two, mean volume of pine and 

spruce per hectare were included in LRALS+NFI when 

information from multisource NFI was included. Prediction 

accuracy increased from 73% with LRALS to 81% with 

LRALS+NFI. 

With the two models it was possible to produce a continuous 

probability surface for identifying areas with high probability 

of experiencing wind damage (Figure 2). ALS data provide 

information about vegetation height and density as well as 

topography and elevation which have been used to describe 

susceptibility to wind damage [3, 8, 5, 13]. 

 

Figure 2: Example of maps indicating areas liable to wind 

damage. 

 
 

4 Conclusions 

The paper presented methods developed with data collected 

for purposes of urban planning, river dynamic modelling, and 

improving Finnish elevation model. The results demonstrated 

the other applications for these data sets, in other words they 

can be used in updating urban tree attributes, monitoring 

vegetation changes in riverine environment, and mapping wind 

damage risk for forest areas. Especially openly accessible data 

sets are increasing which creates pressure for developing 

different applications for them and this paper contributed for 

this emerging field. 
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