
1 Introduction 

Landslide erosion is a serious land management problem in 

New Zealand where a combination of steep erodible hill 

country, a maritime climate featuring frequent and intense 

rainstorms and recent forest clearance for farming has led to 

extensive landslide erosion on many parts of the country’s hill 

country farmland (Figure 1). 

 

Figure 1: Landslides caused by a heavy rainstorm in June 

2015. 

 
Source: Photo taken by Harley Betts. 

 

Understanding the extent and severity of landsliding in New 

Zealand usually relies on detailed manual mapping from aerial 

photography [1] and, more recently, spectral classification of 

regional satellite imagery following major storm events [2]. 

For catchment- to farm-scale applications, however, visual 

image interpretation and mapping has to date been the most 

widely used method for accurately identifying and mapping 

landslides, but it has the drawback of being a time-consuming 

and tedious process and thus is limited to studies of relatively 

small areas. Moreover, visual interpretation is a subjective 

process and results may vary according to the skills and 

experience of the interpreter, the quality and resolution of the 

underlying data, the mapping scale, the complexity of the 

study area and the purpose of the manual mapping [3, 4, 5]. 

The development of semi-automated image classification 

techniques offers the potential to significantly improve 

existing manual landslide mapping techniques, especially 

when combined with a degree of visual interpretation to create 

a “hybrid” approach to landslide identification. 

Over the last decade, object-based image analysis (OBIA) 

has been increasingly used for semi-automated landslide 

mapping using remote sensing data. Image segmentation 

algorithms such as the multiresolution segmentation [6] can 

be applied to create image objects, which serve as basis for 

the classification process. For classification a range of 

characteristics of image objects, such as spectral, spatial, 
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Abstract 

In this paper we present a semi-automated object-based image analysis (OBIA) approach for mapping landslides on historical and 
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natural color images. Aerial photographs from five different dates, ranging from 1944 to 2011, were available for this study. The results 
from semi-automated mapping were compared to manual landslide mapping. Visual image interpretation is still the most widely used 

method for accurately identifying and mapping landslides, but it is a time-consuming process and thus limited to small-scale studies. 

Any large-scale identification and mapping exercise would likely benefit from a certain degree of automation. Advantages and 
disadvantages of both mapping approaches are discussed.  
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contextual and textural properties, can be used. This is 

especially valuable when mapping complex natural features 

such as landslides and constitutes an advantage over pixel-

based approaches. Most often, high resolution (HR) or very 

high resolution (VHR) optical satellite images are used in 

combination with a digital elevation model (DEM) and its 

derivatives such as slope or curvature. However, relatively 

few studies in the literature so far have used aerial 

photographs for object-based landslide mapping [7, 8, 9]. 

Even less research has been done for semi-automatically 

detecting landslides on panchromatic images, even though the 

creation of historical landslide inventory maps relies on the 

analysis of remote sensing data that has been acquired over 

past few decades and is mostly only available in black and 

white [10].  

In this paper we present a semi-automated OBIA approach 

for mapping landslides on historical and recent aerial 

photographs for a landslide-prone study site in New Zealand. 

The transferability of the method across both panchromatic 

and 3-band natural color aerial photographs from different 

years is tested, and the results from semi-automated mapping 

are compared to the results from visual image interpretation. 

 

 

2 Study area and data 

The ~217 hectare study area is located approximately 

5 kilometers southeast of the town of Pahiatua, southeastern 

North Island, New Zealand. It comprises pastoral hill country 

on moderately indurated Tertiary sandstone and mudstone, 

with relief in the order of 100 to 300 m above sea level and 

slopes typically in the 16 to 25 degree range. Most of the 

area’s indigenous forest cover was cleared following 

European settlement in the late 1800s and early 1900s and, as 

a consequence, rain-triggered shallow landslide erosion is 

common. 

Historical aerial photographs were acquired for a range of 

dates ranging from 1944 to 2011 (Table 1). Aerial 

photography was supplied as orthorectified digital images 

with a nominal positional accuracy of 15 meters. 

 

Table 1: Aerial photographs used in this study. 

Acquisition 

date 

Spatial resolution 

(m/pixel) 

Spectral 

resolution 

31/03/1944 0.4 panchromatic 

17/12/1979 0.4 panchromatic 

01/05/1997 0.4 panchromatic 

16/01/2005 0.75 3-band natural 

color 

25/01/2011 0.4 3-band natural 

color 

 

 

3 Methods 

3.1 Object-based landslide mapping 

The semi-automated object-based landslide mapping 

approach has been developed on the most recent aerial 

photographs from 2011 and subsequently transferred to the 

other images. Analyses have been conducted in eCognition 

(Trimble) software, defining a set of knowledge-based 

classification rules. The basic workflow is shown in Figure 2. 

 

Figure 2: Workflow for object-based landslide mapping.

 
 

First, image objects were created by applying the 

multiresolution segmentation algorithm. Spectral information 

(panchromatic band or RGB bands, respectively) and the 

slope layer were then considered for image segmentation. To 

increase the transferability of the method across the 3-band 

natural color and panchromatic images, the spectral values of 

the RGB bands available for 2011 and 2005 were not used 

during rule-based classification. Instead, an average or 

“panchromatic” brightness layer was calculated for the 

multispectral images by dividing the sum of the three spectral 

bands by three. For the classification of landslides this 

brightness/panchromatic layer was mostly used, since 

landslides appear brighter than their immediate surroundings 

on the photographs due to the exposure of bare ground [3]. 

Additionally, slope thresholds were also applied in 

conjunction with the brightness/panchromatic information. 

False positives were removed by using spatial properties of 

image objects such as compactness or length/width together 

with slope thresholds. Finally, classified polygons smaller 

than 10 m² were eliminated. 

The approach has then been transferred to the other aerial 

photographs, whereby only minor adaptations of the 

thresholds and small changes regarding the usage of specific 

image properties were necessary.  

 

3.2 Visual interpretation of landslides 

Visual landslide interpretation from the orthorectified digital 

imagery was carried out on-screen using ArcGIS 10.0 (ESRI). 

Landslides were digitized at scales ranging between 1:600 and 

1:1250. Each landslide was then subdivided visually into 

‘scar’ and ‘debris tail’ in an effort to separate sediment 

sources (scars) from areas receiving sediment (debris tails). 

As for the semi-automated object-based mapping, the 

landslides were mapped on each photograph. The ultimate aim 

of the mapping was to identify all landslides that had occurred 

since the date of the first photography. The mapping results 

were stored as polygon shapefiles containing delineated 
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landslides, subdivided into scars and debris tails, for each date 

of photography. 

 

 

4 Results 

When comparing the absolute area of mapped landslides 

between the semi-automated object-based mapping and the 

manual mapping, only minor differences were detected 

(Figure 3). A slight trend towards overestimating the landslide 

area with OBIA compared to the manual mapping can be 

recognized for the two panchromatic images from 1979 and 

1997, whereas fewer landslides were mapped by OBIA on the 

two RGB images.  

 

Figure 3: Comparison of mapped landslide area (OBIA vs. 

manual mapping) for each aerial photograph.

 
 

During visual interpretation landslides were differentiated 

into tails and scars. This could not be done with OBIA since 

there were no distinct characteristics, neither spectral nor 

spatial, which would have facilitated such a differentiation in 

a semi-automated manner. Thus, for comparison of the results, 

only the overall landslide area was considered. 

The amount of overlapping area and the respective 

producer’s and user’s accuracies per mapping result are given 

in Table 2. The manual mapping was taken as reference for 

the calculation of the accuracy values. A good demonstration 

of the landslide mapping results for 1944 and 2005 is shown 

in Figure 4. While the accuracy values are moderate (Table 2), 

the distribution of the detected landslides over both results 

matches well (Figure 4). For calculating the accuracy values 

the absolute overlapping area was used instead of comparing 

the absolute number of corresponding landslides. The reason 

for this is that the precise delineation of single landslides – as 

possible during manual mapping – is an intricate task in semi-

automated analysis since segmentation-derived image objects 

often do not exactly represent single landslides. Most of the 

landslides have been correctly detected by OBIA, but the 

actual delineation of landslide polygons varies slightly 

between the two methods. 

 

 

5 Discussion and Conclusions 

During visual interpretation, fewer landslide tails than scars 

were mapped, because tails had frequently grassed over prior 

to aerial photography being captured, whereas scars tended to 

take longer to revegetate owing to a lack of remaining soil on 

the scar faces. The cumulative area covered by landslide scars 

was considerably less than that covered by tails, reflecting the 

fact that sediment generated from even small scars is often 

spread over a relatively large downslope area. Further 

research is needed to reliably perform such a differentiation of 

landslide source and deposition area with OBIA. As with 

manual mapping, semi-automated (OBIA) mapping results 

would be sensitive to the length of time elapsed between an 

erosion event and the next available aerial imagery. Imagery 

taken immediately after a storm (for example, showing fresh 

landsliding as shown in Figure 1) is best for capturing the full 

extent of landslide erosion and deposition, but an accurate 

delineation of the actual source areas (landslide scars) by 

OBIA may be facilitated with additional imagery taken some 

weeks after an event in which the depositional tails will have 

started to revegetate, whilst the scars would still be clearly 

visible and easily delineated. Running the OBIA method on 

sequential photography of the same area could potentially 

address the source-versus-sink delineation issue while also 

capturing the total areas affected by landsliding. 

The manual approach shows advantages for delineating 

single landslides or splitting up compound landslides 

complexes into separate landslides. This is a challenge in 

OBIA since image objects created through segmentation 

rarely correspond to single landslides due to over- or 

undersegmentation. Advanced split and merge algorithms 

could be used to refine the delineation of image objects. 

However, the creation of “meaningful” objects with regard to 

a particular context or aim can be very complex [11]. Thus, 

instead of comparing the absolute number of mapped 

landslides, the overlapping area was used for calculating the 

mapping accuracy in this study. Although results from manual 

mapping performed by local experts are often the only 

reference available, they cannot constitute a completely true 

reference as their generation depends on various factors [3]. 

This has to be considered when interpreting accuracy values. 

Manual mapping, while generally accurate within the limits 

of image quality, is a very time-consuming process, and any 

Table 2: Mapping results (in hectare), overlapping area and producer’s and user’s accuracy per image 

Aerial photograph 

(year) 

OBIA mapping 

(ha) 

Manual mapping 

(ha) 

Overlapping 

area (ha) 

Producer’s 

accuracy (%) 

User’s 

accuracy (%) 

1944 2.72 2.83 1.61 56.91 59.22 

1979 2.43 1.94 1.15 59.18 47.29 

1997 2.92 2.24 1.39 62.09 47.75 

2005 14.82 15.84 10.62 67.04 71.67 

2011 3.41 4.63 2.55 55.05 74.66 
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large-scale identification and mapping exercise would likely 

benefit from a degree of automation. For example, automating 

the initial delineation of areas of bare ground – a slow, 

repetitive task – could enable the quick identification of target 

areas, which then can be interpreted accordingly by an 

experienced researcher. It is likely that such a hybrid approach 

combining both semi-automated feature delineation and 

manual interpretation will produce acceptably accurate 

mapping results with the potential to greatly reduce the effort 

required. 
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