
1  Introduction 

The national level spatial planning in Hungary requires 

adequate, preferably timely detailed spatial knowledge about 

soil cover. Numerous databases and soil information systems 

were created in Hungary by different purposes, methods, 

spatial coverage and resolution [28], but the former soil maps 

cannot fully satisfy the recent needs of spatial planning and 

policy making. More and more frequently the requests do not 

refer to primary or secondary soil properties, but to more 

complex or derivated soil information, functions (e.g. filtering, 

buffering), processes (e.g. degradation), services (e.g. 

provisioning, regulating) [21]. The gap between the available 

and expected soil data can be filled by the reinterpretation and 

reprocessing of existing soil survey data or by the fusion of 

former soil information [19]. 

GIS (geographic information system) provides proper 

environment for combined processing of data originating from 

different sources and for object oriented spatial interpretation.  

Digital soil mapping (DSM) is the creation of spatial soil 

information systems by the coupling of observational soil data 

with environmental data through qualitative relationships [18]. 

Applying suitable DSM technique leads to target-specific soil 

maps with appropriate thematic, spatial and temporal accuracy. 

Soil survey data originate from point like observations, their 

spatial support is usually soil profiles. For mapping this point 

type information should be spatially extended by a properly 

chosen process. DSM methods use spatially exhaustive, 

environmental auxiliary variables related to soil forming 

factors for the spatial inference [17]. These variables should be 

in direct or indirect relation with the target soil property and 

should provide full coverage for the target area [18]. The soil-

landscape relation can be modelled by geostatistical and data-

mining methods and the result is a target-specific soil map 

(Figure 1). The spatial accuracy and the reliability of the 

prediction can also be estimated, both locally and globally. 

 

Figure 1: The concept of digital soil mapping. 
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Abstract 

In Hungary a significant amount of soil data is available in different databases or soil information systems, however there are frequent 

discrepancies between the available and the expected soil information. The tasks of spatial planning – like delineation of Areas with Natural 

Constraints or Areas with Excellent Productivity, irrigation strategy – increasingly demand unusual or more complex information about soils, 
which cannot be fully satisfied by formerly elaborated spatial soil information systems. The soil data of the previous surveys should be 

reinterpreted and reprocessed to meet the demands of regional planning activities. Digital soil mapping (DSM) integrates geostatistical, data 

mining and GIS (geographic information system) tools. Applying DSM methods makes the elaboration of target-specific soil maps with 
improved and specific thematic, spatial and temporal accuracy as opposed to former, more general soil maps. 
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It is a recent task in Hungary to designate Areas with 

Natural Constraints according to the common European 

regulation. An objective, science based common criteria 

system for the EU member states was compiled [22], which 

includes a total of eight criteria referring to climate, soil and 

topography. The soil criteria consist of further 11 sub-criteria, 

which require information on many basic and derivative soil 

properties (Table 1). The criteria, which refer to a basic soil 

property – like rooting depth or pH – can be easily mapped 

by the data of the most commonly used soil information 

systems. But other criteria, which are not directly observed in 

Hungary or refer to a more complex soil property, need more 

data sources or the reprocessing of soil survey data. 

In our paper we present three examples how the 

requirements of delineation of Areas with Natural Constraint 

according to the common European biophysical criteria were 

fulfilled by specific DSM products based on the 

reinterpretation of former soil survey information. 

 

Table 1: Soil criteria and thresholds for delineation of Areas 

with Natural Constraints according to EU regulation 

Criterion Definition Severe threshold 

Limited soil 

drainage 

Areas which 

are water 

logged for a 

significant 

duration of 

the year 

Wet 80cm > 6 months, or 40cm 

> 11 months 

Poorly or very poorly drained 

Gleyic color pattern within 

40cm 

Unfavorable 

texture and 

stoniness 

Relative 

abundance of 

clay, silt, 

sand, organic 

matter (weight 

%) and coarse 

material 

(volumetric 

%) fractions 

≥ 15% of topsoil volume is 

coarse material, rock outcrop, 

boulder 

Texture class in half or more 

(cumulatively) of the 100 cm 

soil surface is sand, loamy sand 

Topsoil texture class is heavy 

clay (≥ 60% clay) 

Organic soil (organic matter ≥ 

30%) of at least 40cm 

Topsoil contains 30% or more 

clay and there are vertic 

properties within 100cm of the 

soil surface 

Shallow 

rooting 

depth 

Depth (cm) 

from soil 

surface to 

coherent hard 

rock or hard 

pan 

Rooting depth ≤ 30cm 

Poor 

chemical 

properties 

Presence of 

salts, 

exchangeable 

sodium, 

excessive 

acidity 

Salinity ≥ 4 dS/m in topsoil 

Sodicity ≥ 6 ESP in half or more 

of the 100 cm surface layer 

Soil acidity topsoil pH (H20) ≤ 5 

Source: [22] 

 

 

 

2 Materials and methods 

2.1 Soil data 

In Hungary a large amount of soil information is available 

because of the long tradition is soil survey and soil mapping 

[28]. Digital Kreybig Soil Information System (DKSIS; [23]) 

was compiled based on the most detailed nationwide soil 

survey [14] and it covers the whole area of Hungary. DKSIS 

consists of two types of soil information. Soil mapping units 

are defined by the physical and chemical properties of the 

rooting zone, but it is just a robust categorization. Soil profile 

dataset contains many measured records about the physical and 

chemical soil properties on layer level. Detailed profile 

descriptions are available for about 22.000 sampling sites, 

which is spatially transferred for further 250.000 locations. The 

original mapping concept and survey strategy is discussed in 

details in [23]. 

The Hungarian Soil Information and Monitoring System 

(SIMS) consists of 1.234 observation locations, which have 

been selected to represent the main pedological characteristics. 

SIMS contains detailed and up-to-date quantitative soil 

information about physical and chemical properties on layer 

level [27]. 

The Hungarian Detailed Soil Hydrophysical Database 

(MARTHA) contains harmonized soil hydrophysical and 

chemical information collected from numerous data sources. In 

MARTHA, the soil information is available for 3937 profiles, 

but they are representative mainly for the cultivated area [15]. 

 

2.1.1 Sandiness 

The first criterion, which was estimated in this study is related 

to sand content. The threshold defined for unfavorable texture 

due to significant amount of sand fraction requires that the 

texture class in half or more of the 100 cm soil surface is sand 

or loamy sand. So based on the FAO (Food and Agriculture 

Organization) texture triangle [6] the calculation of this 

criterion requires the knowledge of the amount of sand and silt 

particle fraction of the 100 cm soil surface’ [22]. 

The data of SIMS were used. SIMS contains measurements 

about seven particle size fractions, from which the rate of sand, 

silt and clay can be calculated. Based on FAO particle size 

classes, the limit between silt and sand is 0.063 mm [6], but in 

SIMS it is 0.05 mm (Table 2). 

 

Table 2: Measured particle sizes in SIMS. 

particle size class size [mm] 

clay < 0.002 

silt 

0.002-0.005 

0.005-0.01 

0.01-0.02 

0.02-0.05 

sand 
0.05-0.2 

0.2-2.0 

 

SIMS data were converted into FAO particle size classes by 

log linear interpolation based on the cumulative frequency 

distribution of the particle sizes [20]. It was tested on the 
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converted data if the criterion of the sandiness is met in a layer. 

The layer level results were summarized for the upper 100 cm 

of soil surface. 

 

2.1.2 Vertic properties 

Another criterion, which has required non-existing spatial 

characterization of soils, is in connection with vertic properties 

[22]. Vertic properties emerge in the form of wedge-shaped soil 

aggregates with a longitudinal axis, slickensides and shrink-

swell cracks, which are typical for soils with high clay content 

[13]. The definition of biophysical criterion refers to the 

presence of vertic properties within 100 cm of the soil surface 

[22]. 

Vertic properties cannot be directly measured, they can be 

observed only in field. Soil profile descriptions in DKSIS have 

indication in the form of notes, like shrink-swell cracks or 

slickensides. Therefore a binary parameter was created for the 

occurrence of vertic property: if the profile description includes 

notes about vertic properties, the value of the parameter is 1, in 

all other cases it was set to 0. The result of the mapping, due to 

the applied spatial interpolation method, is a continuous map, 

with probability values for vertic property between 0 and 1. The 

presence of vertic property was considered to be verified above 

66% probability. 

 

2.1.3 Salinity 

The third target criterion in this study refers to soil salinity. Soil 

salinity is determined by measuring the electrical conductivity 

(EC) of a solution extracted from a water-saturated soil paste 

[22]. The prediction of salinity requires the knowledge of EC 

in topsoil. 

None of the Hungarian soil information systems contains data 

on directly measured EC, therefore this parameter should have 

been estimated by other basic soil properties. EC can be 

calculated by the liquid limit and the total salt content of the 

soil [7]. MARTHA was used as data source in case of EC 

estimation. MARTHA was created primarily not for mapping 

purposes, therefore the spatial coverage is not enough 

consistent for the whole country and not so ideal for 

countrywide prediction. Therefore the data of MARTHA was 

completed by another soil information system to achieve 

sufficient spatial coverage for the spatial prediction. DKSIS 

provides data on points where the salt content (and EC as well) 

is certainly zero. By the aid of these auxiliary points the spatial 

extension of saline soils with higher EC can be refined. 

 

2.2 Auxiliary data 

For the mapping of soil properties different auxiliary 

environmental variables were used, and further covariables 

were also derived. These variables characterize the soil forming 

factors, which determine the predicted soil properties. 

The most commonly used covariables characterize the 

terrain. In this study we used the relevant part of EU-DEM. EU-

DEM is a digital elevation model (DEM) for Europe, with 25 

m spatial resolution [1]. Based on this DEM numerous 

derivatives were calculated using SAGA GIS software [2]. 

These derivatives provide information not only on the pure 

terrain properties, but also on other environmental parameters. 

Flow line curvature, general curvature, real surface area and 

vector ruggedness measure characterize the morphometry. 

Relative slope position index and topographic position index 

are in connection with topographic situation. Channel network 

base level, mass balance index, MRVBF (multiresolution index 

of valley bottom flatness), MRRTF (multi-resolution index of 

the ridge top flatness), stream power index, vertical distance to 

channel network are in connection with the hydrological and 

run-off properties of the area. Diurnal anisotropic heating and 

SAGA wetness index are in relation with microclimate. 

Satellite remote sensing provides direct information on land 

cover, land use, vegetation condition and bare soils. For the 

modelling the satellite images of Moderate-Resolution Imaging 

Spectroradiometer (MODIS) sensor (on the board of Terra and 

Aqua satellite) were used, which have a 250 m spatial 

resolution. The applied MODIS images were acquired in spring 

and autumn (16.03.2012 and 07.09.2013) in line with plant 

phenology. The data of the red and the near infra-red (NIR) 

bands were used and NDVI (Normalized Difference 

Vegetation Index; [24]) was calculated, because these bands 

and the calculated index are in strong relationship with the state 

of vegetation and biomass, which reflect certain soil features. 

Climatic conditions can be more generally characterized by 

the long term average of yearly mean temperature, 

precipitation, actual evaporation and evapotranspiration [26]. 

Further environmental variables were also applied as national 

1:50.000 CORINE Land Cover map (CLC50; [3]) and the 

1:100.000 Geological Map of Hungary (FDT100; [8]). The 

land cover and the geological dataset contain numerous 

category, from which object specific groups were aggregated, 

8 and 14 respectively. 

Existing spatial knowledge on soil properties can be also used 

as environmental covariable, so physical and chemical soil 

property maps generated from the soil mapping units of DKSIS 

were also involved in the modelling. 

A set of 70 environmental variables was compiled. For the 

mapping of each target soil property the suitable covariates 

were selected. The auxiliary dataset needed some 

preprocessing, before the spatial inference. The maps of 

covariables were unified to 100 m spatial resolution. The DEM 

and derivatives as well as the satellite images were resampled, 

the point like meteorological data were interpolated and the 

vector data were rasterized to a common, 100 m resolution grid 

system. The categorical data (land cover, geology and soil 

property maps) were used in indicator form. 

 

2.3 Spatial inference 

The target-specific maps were created by intentionally selected 

DSM methods. The final set of environmental covariables in 

the case of each target variable has consisted of at least 40 

layers. To reduce the number of predictor variables and to avoid 

their multicollinearity, principal component analysis (PCA) 

was carried out at first. In the further analysis the first principal 

components, which explain together the 99% of the variance, 

were used. 

The spatial extension of soil data was performed by 

regression kriging (RK), which is widely used in digital soil 

mapping [4, 5, 10, 12, 16]. RK is a spatial prediction technique 

that combines the regression of the dependent variable on 

auxiliary variables with kriging of the regression residuals [11]. 

So at first, the target soil property was modelled by multiple 

linear regression analysis (MLRA) with stepwise selection 
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method (5% significance level) of the environmental variables. 

The interpolation of residuals (the differences between the 

predicted and observed values) was carried out by ordinary 

kriging. The result of the estimation is the sum of the regression 

model and the interpolated residuals. RK was carried out in 

SAGA GIS environment. 

The overall accuracy of the predicted maps was checked by 

Leave One Out Cross Validation (LOOCV; [25]). By LOOCV 

the estimation of the target soil property is carried out n-1 

times, leaving out each time one of the samples. Then the 

predicted and the measured values of the left-out sample are 

compared. 

Table 3: Validation methods used in this study. 

Validation methods Calculation 

mean error 
ME =

1

n
∙∑[ẑ(si) − z(si)]

n

i=1

 

mean absolute error 
MAE =

1

n
∙∑|ẑ(si) − z(si)|

n

i=1

 

root mean square error  

RMSE = √
1

n
∙∑[ẑ(si) − z(si)]

2

n

i=1

 

root mean normalized 

square error 
RMNSE = √

1

n
∙∑[

ẑ(si) − z(si)

σ𝑖̂
]

2n

i=1

 

ẑ(si) and z(si) are the estimated and measured values at the si 

control point and σ𝑖̂ is the prediction variance 

The estimation of the overall accuracy was tested by the 

following parameters: mean error (ME), mean absolute error 

(MAE), root mean square error (RMSE) and root mean 

normalized square error (RMNSE) (Table 3). 

The expected value of the ME and RMNSE are 0 and 1, 

respectively. MAE and RMSE refer to the accuracy of the 

estimation, the lower the value of the MAE and the RMSE, the 

better is the prediction accuracy [9]. 

The validation of the probability map is carried out by 

slightly differently. In this case the final map was validated by 

a coincidence matrix. 

The spatial accuracy of the maps can be characterized by the 

prediction variance [10], which expresses the uncertainty of the 

prediction. The prediction variance maps are provided for all 

map results.  

 

3 Results and Discussion 

3.1 Compilation of the map of unfavorable texture 

due to significant amount of sand fraction 

Soil texture properties are affected mainly by topography, 

climate, vegetation and parent material. For the spatial 

inference the following environmental auxiliary variables were 

selected by the stepwise method of the MLRA: 

 DEM and derivatives: elevation, slope, 

multiresolution ridge top flatness, multi resolution 

valley bottom flatness 

 climatological data: yearly mean precipitation, actual 

evaporation, evapotranspiration 

 satellite data: NDVI, spring-NIR 

 

Figure 2: Thickness of sand and loamy sand layer of the 100 cm soil surface in Hungary. 
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 geological data: blown sand 

 land cover: arable land, forest 

 physical soil property map: poor water retention and 

very high permeability, and infiltration rate 

The predicted sandiness criterion map is displayed in Figure 2. 

The areas with coarser particle size are well-delineated and 

coincided with the location of the main sand ridges in Hungary. 

The result of the LOOCV is summarized in Table 4. The MAE 

of the prediction is 12 cm. 

 

Table 4: Results of the LOOCV validation according to the 

prediction of sandiness. 

Validation method Validation result 

ME -0.003 

MAE 12.478 

RMSE 19.853 

RMNSE 1.094 

 

3.2 Compilation of the map of vertic properties 

In this case the target soil property was the probability of the 

occurrence of vertic properties. The stepwise regression 

method provides possibility for the evaluation of the 

environmental auxiliary variables selected for the modelling. 

The covariables were the followings: 

 DEM and derivatives: aspect, topographic wetness 

index, SAGA wetness index, multiresolution ridge 

top flatness, multi resolution valley bottom flatness, 

diurnal anisotropic heating 

 climatological data: yearly mean temperature, 

precipitation, actual evaporation, evapotranspiration 

 satellite data: NDVI, NIR-band, red-band 

 physical soil property map: good and high water 

retention, saline soils, peaty soils 

The spatial extension of the probability of presence of vertic 

properties was carried out by RK. The predicted vertic property 

criterion map is displayed in Figure 3, where the mapped 

probability values were converted to percentage. The 

occurrence of vertic properties has coincided with lowlands 

covered with fluvial sediment and where the inland excess 

water inundation is frequent in Hungary. 

By the validation the predicted probability values (0–1) and 

the observed parameters (0 or 1) were compared; the predicted 

values above 0.66 were taken into consideration as 1, under 

0.66 as 0. This value was chosen, because using 66% as a limit 

is generally accepted in the methodology of defining natural 

constraints [22]. The LOOCV results referring to vertic 

property map are shown in Table 5. The overall accuracy of the 

map is rather good, because misclassification occurs only in 

case of 3%. 

 

Table 5: Result of the validation in case of vertic property. 

Fulfilled criterion predicted 

Yes (1) No (0) 

observed 
Yes (1) 34.8% 1.8% 

No (0) 1.2% 62.2% 

 

3.3 Compilation of the map of salinity in topsoil 

The target soil property was the EC of soils. While EC and salt 

content is affected by topography, climate, vegetation and 

parent material, therefore in its spatial inference the following 

 

Figure 3: The probability of the occurrence of vertic properties in Hungary. 

 
 



AGILE 2016 – Helsinki, June 14-17, 2016 

 

 

environmental auxiliary variables were used by the stepwise 

method of the MLRA: 

 DEM and derivatives: SAGA wetness index, 

multiresolution ridge top flatness, multi resolution 

valley bottom flatness 

 climatological data: yearly mean precipitation, actual 

evaporation 

 satellite data: autumn-NDVI 

 land cover: grassland, sparse vegetation 

 physical soil property map: saline soils 

 chemical soil property map: saline soils, neutral and 

calcic soils 

The predicted salinity criterion map is displayed in Figure 4. 

The areas with higher EC and higher salt content are in good 

agreement with the areas covered by saline soils in Hungary. 

 

The result of the LOOCV are summarized in Table 6. Based 

on the ME result, the model somewhat overestimates. RMNSE 

is also close to its expected value. Based on MAE and RMSE 

the overall accuracy of the prediction is acceptable. MAE and 

RMSE has relative low values, they are lower than the 10% of 

the value set. 

Table 6: Results of the LOOCV validation according to the 

prediction of salinity. 

Validation method Validation result 

ME 0.010 

MAE 0.850 

RMSE 1.430 

RMNSE 0.935 

4 Conclusion 

The task was to produce reliable, nationwide maps on 

specific soil features, which were not mapped or expressed 

spatially formerly. In this study the elaboration of three new 

object-oriented maps is presented, which were created by 

regression kriging. To fulfil the data demand of the presented 

maps the reinterpretation of former soil survey information and 

the integration of more datasources were needed. The compiled 

new maps can satisfy the needs of designation of Areas with 

Natural Constraints. Our approach can be also applied by other 

tasks of spatial planning – like designation of Areas with 

Excellent Productivity, support of irrigation strategy and flood 

risk assessment –, if the target soil property is clearly defined. 
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