
1 Introduction 

Gullying is a natural process and a consequence of running 

water eroding soils or unconsolidated cohesive materials. 

Gullying is an important signal of land degradation [1]. 

Mapping of gullies is essential to identify affected areas, 

quantify the size of the process, estimate the rates of change, 

and predict environmental consequences [2, 3]. Semi-

automatic detection based on images has become a common 

method for mapping gullies [3, 4], and so has using mean 

elevation differences from light detection and ranging 

(LiDAR)-derived digital terrain models (DTM) [5]. Mapping 

of gullies based on other terrain derivatives such as total 

curvature or surface roughness remains relatively 

underexplored. 

Terrain-surface roughness is a morphometric measure 

expressing how heterogeneous a land surface is [6, 7]. A 

DTM-derived roughness characterizes the local variance of 

surface gradients or curvatures, and enables distinguishing 

between smooth and rugged landforms or landforms elements. 

This property might be a useful indicator gully formation. 

Visual interpretation of DTMs shows that erosional landforms 

like gullies stand out from DTMs because of higher roughness 

than adjacent landforms. Previous studies [8-10] show that 

roughness can help to discern such landforms as well as the 

processes formed by them. However, how well this metric 

aids an automatic detection of gullies that are diagnostic of 

land degradation remains only partly understood.  

We offer a method for calculating a roughness index based 

on the log-transformed standard deviation of total curvature 

extracted from LiDAR DTMs and its application in mapping 

gullies. We choose LiDAR data, because they facilitate high 

quality DTMs for areas covered by vegetation, where visual 

interpretation on optical images is often limited. 

In the following we assess how well roughness is suited for 

detecting gullies in a study area prone to this type of erosion 

in California. Our objective is to introduce, test, and make 

available a new ArcGIS toolbox for evaluating terrain-surface 

roughness. 

 

 

2 Previous works 

The term roughness is defined and interpreted in several 

differing ways, depending on the field of study, the scale of 

analysis, and the aim of application [11]. Here we define the 

terrain roughness as a morphometric variable that expresses 

the local heterogeneity of a terrain surface. 

A simple method introduced by Riley et al. [12] compute 

terrain roughness by estimating the variability of elevation, or 

slope in a local neighbourhood. Frankel and Dolan [13] 

suggested a method based on slope differences, by evaluating 

the standard deviation of local slope of every cell and its 

neighbours. An alternative using the standard deviation of 

residual topography was introduced by Haneberg et al. [14] 

and explained in detail by Cavalli and Marchi [15], and 

Cavalli et al. [16]. This method treats roughness as the 

standard deviation of the difference between the elevation and 

its locally smoothed derivatives within a moving square of 5-

pixel side length. Similarly, Shepard et al. [17] proposed a set 

of algorithms based on the root mean square of elevation, 

relief and slope. 

Other algorithms estimate surface roughness using point-

cloud data. Glenn et al. [8] divided point cloud data into grid 

squares and identified the lowest elevation for each square. 

Using thin-plate spline interpolation of these minimum values, 

they estimated the height of every point above this surface, 

expressing roughness as the standard deviation of these height 

Mapping gullies using terrain-surface roughness 

 Karolina Korzeniowska 

BSF Swissphoto GmbH 

Mittelstraße 7 

Schönefeld, Germany 

karolina.korzeniowska@bsf-

swissphoto.com 

Oliver Korup 

University of Potsdam 

Karl-Liebknecht-Straße 24-25 

Potsdam, Germany 

korup@geo.uni-potsdam.de 

 

 

Abstract 

Gully erosion is a widespread and serious process of soil and land degradation. Mapping of gullies is important to quantify the amount of 

past soil losses, and to anticipate future erosion. Surface roughness obtained from remote sensing data often involves morphometric 

measures of terrain heterogeneity derived by unsupervised classification. We present a curvature-based method for computing surface 
roughness from digital terrain models (DTMs) derived from LiDAR (Light Detection And Ranging), and apply this metric for mapping 

gullies on Santa Cruz Island, USA. We estimate roughness as the log-transformed standard deviation of the total curvature in a fixed search 

window. We find that our method has potential for detecting gullies, if having high roughness contrasts to the surrounding landscape. We 
can obtain up to an overall accuracy of 0.89, and a Cohen’s kappa of up 0.64 with this approach. Our algorithm has scope for wider 

applications and extensions to more coarse topographic data such as those from the SRTM (Shuttle Radar Topography Mission) to 

potentially recognize larger gullies or sharp-bounded channel and valley tracts at the regional scale. 
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differences. Pollyea and Fairley [18] estimated surface 

roughness from a 3D point cloud with orthogonal distance 

regression, and fitted a local reference plane to uniformly 

spaced 3D grid cells. From this plane an orthogonal distance 

is estimated for every point, and the surface roughness of a 

given grid cell computed as the standard deviation of the 

orthogonal point-to-plane distances. McKean and Roering 

[19] advocated a more sophisticated use of slope statistics 

based on the direction cosines of normal vectors for each cell 

in the DTM.  

Yet other methods used a two-dimensional discrete Fourier 

transform and a continuous wavelet transform [20]. These 

methods exploit the amplitude patterns of topographic features 

with respect to their frequency to estimate the roughness. 

Grohmann et al. [21, 22] compared a number of existing 

roughness methods. The authors underlined the importance of 

moving window size for computing roughness statistics, 

together with the resolution of input data. They [21] also 

concluded that standard deviation of slope, standard deviation 

of profile curvature, and vector dispersion gave good results, 

depicting most terrain features. Also, [22] stated that simple 

methods like root mean square based algorithms, wavelet 

lifting scheme, and the direction cosines of eigenvalues 

performed well or even better than the more complex ones. 

Based on these findings of previous studies, we use local (5 

x 5 pixel) neighbourhood statistics of terrain curvature instead 

of slope or elevation for computing terrain roughness. 

 

 

3 Study area and data 

 Previous studies [14], [19] argued that landforms linked to 

erosion have a roughness that differs from that of the 

surrounding landscape. To further test this hypothesis, we 

chose a number of gully sites to check whether our metric of 

surface roughness could reliably detect them. Our study area 

is in a grassland on Santa Cruz Island, California which is the 

largest island in the Channels Islands [Fig. 1]. Santa Cruz 

Island is affected by land degradation due to increase in the 

animal population in the 19th century, this has affected 

vegetation denudation [2]. Although, further re-vegetation in 

this area has affected the slope stabilization, the gullying 

process on some parts still occur [23].   

 We used LiDAR data for evaluating surface roughness. 

These data are suitable for the purpose of our study because 

the laser-scanner signals are reflected below the vegetation 

canopy. This reflection allows filtering out those data points 

that originate from the vegetation, thus returning a terrain 

model that represents the bare earth surface [24]. 

 We obtained the data through the Open Topography [25] 

online portal. The data were acquired in 2010 with 8 pts/m² 

density [Fig. 1]. For generating DTMs from those data we 

used the classification for terrain and off-terrain points 

provided by Open Topography. We processed the data and 

generated the DTMs using the OPALS Software [26], using a 

moving-planes interpolation, and exporting it as a 1-m 

resolution raster. 

 

 

4 Estimating terrain-surface roughness 

 We used a curvature map for estimating terrain-surface 

roughness following the method by Zevenbergen and Thorne 

[27]. They distinguished three types of curvatures, i.e. 1) 

profile curvature measured in the direction of the maximum 

slope; 2) planform curvature measured normal to the direction 

of the maximum slope; and 3) total curvature measured as the 

general curvature of the surface. Total curvature is thus the 

finite second derivative of the surface elevation, or the slope 

of the slope.  

 We introduce a roughness index based on the standard 

deviation of total curvature. The first step of our method 

involves estimating the total curvature with the Curvature tool 

available in ArcGIS, using the equations in [27]. We then 

computed the local standard deviation within a 5 x 5 pixel 

window, and interpret this as a metric of terrain roughness. 

The histogram of this metric has a high dynamic range, with 

most data clustering near zero, and only few data points 

having very large values. Hence we log-transformed the data 

to establish a numerically more convenient format [Fig. 2]. 

Surface roughness is high where the landscape is highly 

heterogeneous, and affected by gullying. Low roughness 

values coincide largely with smoother parts of the landscape 

Figure 1: Test site and input data for testing the 

detectability of gullies from a surface roughness index. 

 

 

 

Figure 2: Detail of manually digitized gullies on shaded 

relief map and terrain-surface roughness.  

 

 



AGILE 2016 – Helsinki, June 14-17, 2016 

 

such as most of the hillslope flanks and valley floors. 

We implemented this algorithm as a toolbox for ESRI’s 

ArcGIS 10.3 Desktop version. 

 

 

5 Detecting gullies 

How reliable is of our roughness index in mapping areas 

affected by gullying? We used a simple threshold in the 

roughness histogram to optimally capture the border of 

manually mapped gullies, which we used as reference data. 

We manually digitized all gullies from shaded relief map and 

a support images from Google Earth. Finding the threshold 

that results in the highest accuracy and the lowest commission 

and omission errors is a challenging task.  

We selected the threshold by analysing the roughness 

histogram in a manual trial-and-error approach. We found that 

the highest discrimination between gullies and surrounding 

landforms was at a threshold equal of 1.47 [a.u.]. Comparing 

this threshold with reference data – that were generated by us 

by manually digitizing of the boundaries of gullies from 

shaded relief map – we observed that the outlines differed 

from each other. This is because we evaluated the standard 

deviation of total curvature in a 5 x 5 neighbourhood. To 

eliminate the influence of kernel size on our thresholding 

results we applied an erosion morphological filter [28]. We 

reclassified all pixels classified as gullies along their 

boundaries as not belonging to the gully class in a 2-pixel 

buffer [Fig. 3]. 

 

 

We verified the accuracy of our classification using standard 

statistical performance measures [29, 30]. We estimated the 

overall accuracy by dividing the total number of correctly 

classified pixels by the total number of pixels. The producer’s, 

accuracy we evaluated as the number of pixels correctly 

classified as gullies divided by the total number of pixels 

assigned as gullies in the reference data. The user’s accuracy 

we relates the number of pixels correctly classified as gullies 

to the total number of pixels classified as gullies. The Cohen’s 

kappa is a means to rate the agreement of the classification. 

We find that a semi-automatic detection of gullies with our 

roughness algorithm, histogram thresholding and erosion filter 

achieve an overall accuracy of 0.89 with a Cohen’s kappa of 

0.64 [Tab. 1].  

 

Table 1: Performance metrics of the classification. 

Overall accuracy 0.89 

Producer’s accuracy 0.65 

User’s accuracy 0.77 

Cohen’s kappa 0.64 

 

 We also checked whether our classification obtained the 

highest possible accuracy from our terrain-surface roughness 

data, and calculated the receiver-operating characteristic 

(ROC) [31]. To this end, we selected one hundred different 

thresholds between the minimum to the maximum of our 

roughness data. We assessed the results by comparing the 

sensitivity (true positive rate) and fall-out measures (false 

positive rate) [Fig. 4].  

 

 

The area under the curve (AUC=0.94) of the ROC shows 

that our terrain-surface roughness index has a nominally high 

accuracy for detecting gullies. The overall, producer’s and 

user’s accuracy show that the highest accuracy that can be 

achieved from our index is 0.89, 0.73, and 0.73, respectively. 

The Cohen’s kappa indicates that the highest possible interrate 

agreement of a classification using our roughness index is 

0.66. 

These findings suggest that our semi-automatic approach 

approximates the highest possible accuracy for detecting 

gullies. However, the trial-and-error approach is time 

consuming and potentially subjective. Therefore an automatic 

method like thresholding of a binary map for selecting an 

appropriate threshold is desirable. The automatic thresholding 

methods can work for example on analyzing the data 

histogram, clustering, and analyzing objects attributes. 

 

 

6 Discussion 

 We propose a terrain-surface roughness index expressing 

the standard deviation differences of total curvature. We use 

curvature because it integrates local changes in both slope and 

aspect. Our results demonstrate a high accuracy of a semi-

automatic mapping procedure for gullies using LiDAR-

derived topographic data. 

 The highest accuracy of detecting gullies with our algorithm 

is likely to be tied to landscapes dominated by these 

landforms, while featuring few other distinctly different 

landforms. This is because our algorithm is blind to the type 

Figure 3: Detail of extracted areas affected by gullying 

and classification errors. 

 

 

Figure 4: Performance statistics for gully classification. 
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of detected object. Here expert knowledge and additional 

metrics, related to the shape, position and neighborhood, are 

necessary to distinguish between different landform types, and 

to ideally assign to each a characteristic roughness fingerprint. 

Nevertheless, we demonstrated that our roughness metric 

combined with thresholding and erosion filtering is useful for 

semi-automatically detecting gullies with high accuracy. 

Comparing the achieved overall, user’s and producer’s 

accuracy to previous studies [32], we find that our approach 

attains a better performance in detecting gullies. 

We stress that the threshold values selected for this 

particular classification cannot be readily used as absolute 

values and transferred to other areas subject to gully erosion. 

Using a different point cloud density will influence DTM 

generation, and hence the roughness computation. 

Furthermore, the method selected for interpolation, and the 

selected spatial resolution of the topographic data will change 

the DTM input data [33]. Hence the threshold should be 

evaluated separately for every individual dataset. We also 

suspect that our algorithm may be useful for coarser Shuttle 

Radar Topography Mission (SRTM) data if the aim is to 

recognize larger-scale landforms such as sharp-edged river 

channels or valley segments at the regional scale. 

 

 

7 Conclusion 

 Mapping of gullies is essential for detecting and quantifying 

soil degradation. Estimating surface roughness as a function 

of local differences in topographic curvature is a promising 

step for mapping erosional landforms and natural hazards 

from digital terrain models. We present a simple method for 

evaluating surface roughness and provide an implementation 

of our method as a toolbox for ArcGIS software. 

 Our tests show that the method has potential for detecting 

gullies, pending that they are characterized by sufficient 

contrasts in surface roughness compared to the surrounding 

terrain.  

 We anticipate that our roughness algorithm has scope for 

applications in other scientific disciplines concerned with 

objects having a surface roughness different from their 

surroundings. However, our algorithm also has some 

limitations. It is neither designed to—nor capable of— 

recognizing the type of detected landforms. Here an expert 

knowledge is necessary to recognize the analyzed landforms 

correctly. Future work may wish to focus on combining a 

roughness-based approach with data on landform shape, 

position, neighborhood, and automatic methods for 

differentiating types of landforms to work towards a more 

comprehensive classificatory approach. 
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